=
HEWLETTW PACKARD

Computer Systems

1978 Volume Il Issue. 2

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

EDITOR'S DESK

g Cvomputer
T Museum

WIN AN HP-21 CALCULATOR!
Since its beginning in 1975, the Communicator has changed format several times. During this period, the primary source of
technical articles has been employees of the HP Data Systems Division. In order to increase the diversity of topics and number
of articles we are soliciting articles from customers and other HP divisions. To make it worth your time, two free HP-21 hand-held

calculators will be awarded per issue (one to a customer, one to an HP employee) to the authors of the best feature-length
articles which fall in one of the following categories:

Operating Systems
Instrumentation
Operations Management
Computation

The employees of the Technical Marketing department of Data Systems Division are not eligible for the calculator prize: all other
HP employees are eligible. Customers and HP employees will not compete against each other, since HP employees have
access to more information. A prize will be awarded even if there is only a single entry.

A feature-length article must meet the following criteria:

1. The topic must be of general interest to our readers and fall into one of the four categories above.

2. It must cover at least two pages in the 1000 Communicator, exclusive of listings and illustrations. At the current print size,
this is approximately 1650 words.

The eligibility rules for receiving a calculator are:
1. No individual will be awarded more than one calculator per calendar year.
2. In the case of multiple authors, the calculator will be awarded to the first listed author of the winning article.

3. Anarticle which is part of a series will compete on its own merits with other articles in the issue. The total of all articles in the
series will not compete against the total of all articles in another series.

4. Employees of Technical Marketing in the HP Data Systems Division (Division 22) are not eligible.
All entries will be judged by a team of at least 3 people in Technical Marketing.

The number of articles currently submitted to the 1000 Communicator is not now large. If you submit an article, you have a good
chance of becoming a winner!

The deadlines for articles in the remainder of 1978 are:
Issue #4 — June 15th

#5 — August 15th
#6 — October 15th

All winners will be announced in the HP 1000 Communicator in the issue in which their winning articles appear.
FOR THE OEMS
We are starting up a new section of the Communicator to be called “OEM Corner". To fill this section, we are soliciting articles

HP's OEM software houses which are basically educational-tutorial in nature. To provide incentive, the OEM is permitted a short

(limit 150 words) announcement of his product(s) at the end of the article which is based upon the concepts expressed in the
article.

EDITOR'S DESK

It is expected that OEM software products complement the HP product line or present a more complete solution to a problem:
HP, in contrast, sells tools of a general nature. Therefore, some explanation of this sort is permissable in the OEM's article. The
article should present a technique or innovative idea of general interest to HP customers.

The readership of the Communicator is assummed to cover the full range from neophyte to expert. Therefore, the author may
address any level of expertise he chooses. However, the clarity of presentation is always an important consideration,
regardless of the assumed background of the reader.

Articles should be typed, double-spaced and at least 4 pages in length (exclusive of illustrations). lilustrations should be kept to
a minimum. Only in unusual cases should an article be more than 10 type-written pages.

All articles are subject to editorship and minor revisions. In general the author will be contacted if there is any question of
changing the information content. Articles requiring major revision will be returned with an explanatory note. We hope not to
return any articles and would like to work with all authors to overcome any objections. However HP reserves the right to reject
any articles judged not to be of general interest to HP customers.

The deadlines for articles are the same as those listed above for the calculator prize.

CONTENTS

User's Queue (including LOCUS Computation
announcements)ii.... 1
e Caution on Math Operations on
Hollerith Constants 41
_ Bit Bucket
Special Announcement: New Software
Support Program Now Available for e Software Samantha 42
HP 1000 System Users................. 8 ® Detecting Problems at Boot-up Time 43
e Patch a System Before You Install It 47
Bulletins
Operating Systems
e Documentation e 48
e RTE IV: Logical and Physical e Software Updates 51
Memory Organization 9 ® Training Schedule 59
e Know Your DS-1000, Part | 13 _ o .
e Using Class I/O for a Terminal Handler 2a Computer Service Division Ordering

e Interactive Debugging with DBUGR 29 Information

USER'S QUEUE

Starting with this issue, information on new programs in the Contributed Library (LOCUS) is given in this column. Previously, this
information has been located in the “Bulletins’ section.

The other purpose of this column is to publish letters from users on technical subjects. Letters may be comments on previous
articles, corrections/notification of errors found, suggestions, hints for other users, etc.

NEW CONTRIBUTED PROGRAMS

This information is given to use by the LOCUS Librarian, Melanie Van Vliet. It serves as an update for the Data systems LOCUS
Program Catalog (20000-90099). The programs listed below are now available. Contact your local HP sales office to order
LOCUS material, or (U.S.A. only) you may use the Direct Mail Order Form at the back of this issue.

22682-18987 TAPE CARTRIDGE SAVE & RESTORE RTE-II/IlI

This package consists of a main program JOB3M written in FORTRAN, two FORTRAN
subroutines and an Assembly language subroutine designed to operate in the RTE-11/11]
environment using the File Manager Package (FMP) calls and interacts with magnetic
tape cartridges. This permits the user to save and restore file manager files in 128 word
records, thus increasing the storage capacity of the tape to about 468 blocks. A header
is written which provides a means to recreate the file manager file on recovery. A list of
files is input from either keyboard or a file manager file. Any extents in the files will be
packed out upon recovery. Recovery can be selected files from the cartridge or all files
on the cartridge. Means are provided to copy the directory and user information.

22682-18987 PT $25.00
22682-13387 Cass $35.00
22682-18989 HP3437 SYSTEM VOLTMETER DEVICE SUBROUTINES

The 3437A Device subroutines are high level interface routines which convert simple
call statements in FORTRAN or Basic into RTE calls to the HP-1B driver. Programming
the 3437A is divided into a setup call (DSVSU) and a measurement call (DSVMS). All
front panel switches of the 3437A are programmable for range, trigger-source, and
delay. Up to 100 readings may be made in the direct mode and 1250 readings in a
second mode where the readings are put into a disc file. Usage is made of software
from the Multi-Terminal Interface Software, HP part number 92425A to be compatible in a
multi-terminal environment. Minor modifications are necessary if that software is not

used.

22682-18989 PT $35.00

22682-13389 Cass $35.00
22682-10990 ABORTING PROGRAM FREEZER —

This package allows you to fix up RTE so that it will “freeze” the program in its partition
and dump the program to some device for analysis, or, better yet, use a debugging
utility to determine what it was doing, without having to decode instructions. The main
program is ABDMP. You run it, and specify the name of one or more programs which
are to be “frozen” for your examination, should they be aborted by RTE. ABDMP inserts
a “patch” into the RTE system message processor, $ERMG, so that some “special”
code can be executed first. $ERMG is entered whenever RTE wants to abort a program
abnormally (memory protect, dynamic mapping, IOXX errors, etc.). The “special” code

1

USER'S QUEUE

22682-18991

22682-10992

22682-10993

is contained in the module SPATC, supplied with ABDMP, which compares the 1D
segment address of the currently executing program (which is the one being aborted,
usually) with the ID’s of all programs in its list. The exception is when an operator aborts
a program.

22682-109390 800 BPI MT $75.00
22682-11990 1600 BPI MT $75.00
22682-13390 Cassettes $75.00

RTE-II/IIl MULTI-TERMINAL PROGRAM DEVELOPMENT & EXECUTION INTERFACE
WITH AUTOMATIC SPOOLING

This program establishes a true multi-terminal, multi-program development and execu-
tion environment with automatic spooling. That is LS/LG bottlenecks are eliminated and
any listings, reports, etc., contending for the same peripherals are automatically
spooled instead of interleaved. Furthermore no cooperation is required among users
that are editing, compiling loading and executing programs concurrently. The program
assembles/compiles programs either from logical units and/or files. Listings and the
object code may be directed to either logical units or files. If a output logical unit is a
spooled device, a spool pool file is automatically set-up. The spool file is closed and
passed at the end of the operation. In the case of output files, duplicate files are purged
and recreated. If the file does not exist it will be created. This programs loads programs
from logical unit devices and/or files and then performs a library search. Both compile
and load operations may be from multiple files and/or logical units. In the case of
multiple sources, tape numbers will identify each source in the listing. Standard NAMR
parameters are source in the listing. Standard NAMR parameters are used for file
names i.e., NAME:SC:C#. All messages are directed to the user's console instead of
the system console, i.e., LOADER UNDEFINED EXTERNALS, NO SOURCE, ETC.,.

22682-18991 PT $50.00
22682-10991 800 BPI MT $50.00
22682-11991 1600 BP1 MT $50.00
22682-13391 Cass $75.00

Status Decoding Functions

These four subprograms test the status of a logical unit for end of file, end of medium,
and error conditions. They can be called as LOGICAL functions.

22682-10992 800 BPI MT $40.00
22682-11992 1600 BPI MT $40.00
22682-13392 Cassette $40.00

WOLF - Automatic Typing Program

This is a FORTRAN IV program for the HP 2100 series computer that provides for

automatic typing operations and can, when employed with manufacturers text editor,
provides a system to greatly facilitate preparation of reports, letters and other text. The
input text and imbedded control data can perform nearly all of the functions of a typist.
A few of the features available are centering, titles, footnotes, indentation, page number-
ing (including Roman numerals), automatic paragraphing, and two forms of tab opera-
tions. The documentation contains both user and technical description of the program.

22682-10993 800 BPI MT $95.00
22682-11093 1600 BPI MT $95.00
22682-13393 Cassettes $120.00

22682-18994

22682-10995

USER'S QUEUE

Check Protect Subroutine — PROTK

This subroutine is useful in payroll and accounts payable programs where checks are
computer generated. Input is eight character decimal string, and output is sixty-eight
characters.

22682-18994 PT $10.00
22682-13394 Cassette $35.00

COORDINATE TRANSFORMATION PACKAGE

This package is an adaptation of the coordinate transformation routines contained in
The Coast Geodetic Survey, Tech. Report #34, 8/67 — " Aerotriangulation: Transforma-
tion Of Surveying And Mapping”. Revisions have been made to include the following
capabilities or requirements:

1. X, Y projection and spheroid constants either contained in or generated by the
program.

Method of selection based on a pre-defined set of codes.

The incorporation of the mercator projection.

The ability to access the coordinate transformation routines from another program.
Allow full transformation capability with minimum storage requirements on the
application program.

SRS A

In order to accomplish the desired purpose of the transformation routines, excution
time has been deemed secondary. Hardware requirements include a 21MX with
minimum 8K partition and at least 138 words of background common.

22682-10995 800 BPI MT $75.00
22682-11995 1600 BPI MT $75.00
22682-13395 Cassettes $95.00

USER'S QUEUE

A correction to the article “A Solution to the Multi-Terminal Blues” is issue #16 came to our attention as follows:

“Dear Sir,

The article entitled "'A Solution to the Multi-Terminal Blues” in issue number 16 aroused sufficient interest in myself to try out the
transfer file exampled at the bottom left of page 12. This caused a little confusion until | realised a mistake in the fine which
assigns a value to the global —25P. | suggest a corection of the form:

:CA,-25:P,-39P,/,10,+,10,+,-1,+,-39P,+,400B,+,-25P

I hope this may be of some use to you, perhaps for documentation purposes. However, | must congratulate you generally on
your issue #16. | found it very interesting reading indeed.

Yours faithfully,

Nigel Turner (Research Scientist)
British Gas Corporation

Research & Development Division
Midlands Research Station

Wharf Lane, Solihull,

West Midlands B91 20W"

This correction has been verified and is, indeed, accurate. Thanks to Nigel Turner for pointing it out to our readers — and for the
compliments!

A second letter from a reader gives a technique that should be of interest to many others:

“Enclosed is a small assembler subroutine that allows formatted output in RTE BASIC. To my knowledge, this has not been
published before and it was the one thing really missing in BASIC.

Itis simple to use. Merely set up the format statements in string variables with up to 62 characters. The total number of variables
that can be transferred in one WRITE statement in 12.

Sincerely,

D.A. Van Den Eijkel
ESCOM----P.T&C. Dept.
P.O. Box 103

Germiston

1400

Republic of South Africa”

The listing for the subroutine is given below. Itincludes a sample test program (in BASIC) and the required entry for the Branch
& Mnemonic Table Generator. Many thanks to D.A. Van Den Eijkel.

* %k * k kEEEEEEE S L E Tk

»
»
»

00000

ASMB,R,L

NAM
EXT
ENT

WRITE

.ENTR, .DIO., .RAR.,.DTA.,IFIX

WRIT

SUBROUTINE TO ALLOW FORMATTED OUTPUT IN BASIC

SAMPLE BASIC PROGRAM:

UP TO 12 VARIABLES ARE ALLOWED

10 DIM A$¢100),B(3)
20 A$="(12HANSWERS ARE:
30 READ G,H,BC1),B(2),B(3)

JF6.1,2X,12,3¢2X,F7.2))"

40 DATA 327,7,64,89.56,1509.5,1421.1
50 WRITE ¢15,A%,G,H,BC1),B(2),B(3))

60 END

FORMAT STATEMENT MAY HAVE UP TO 62 CHARACTERS
(80 CHARS PER BASIC LINE)

RTETG INPUT FILE:

BRT,

MNT, ID=C

USER'S QUEUE

WRITE(R,RA,R,R,R,R,R,R,R,R,R,R,R,R),O0V=0,BP,VL,ENT= WRIT,FIL=XWRITE

ESCOM--P.T.&C.---GERMISTON-- REP. OF SOUTH AFRICA

D.A.

00000
00001

00002
00016
00017
00020
00021

00022
00023
00024
00025
00026
00027
00030
00031

00032
00033
00034
00035
00036
00037

GET S

00040
00041

00042
00043
00044
00045
00046
00047
00050
00051

00052
00053
00054

000S5
00056
00057
00060
00061
00062
00063
00064
00065
00066

00067
00000
00070
00071
00072
00073
00074
00075
00076
00126
00127

VAN DEN EIJKEL

000000
000000
000000
000000
016001X
000000R
104200
100000R
016005X
072067R
062001R
002004
072126R
062127R
072070R
062071R
072072R
006400
076073R
062074R
072075R

PECIFIED

162072R
002003
026055R
104200
100000
104400
100075R
036073R
036072R
036075SR
036075R
036070R
026040R

062067R
006400

016002X
100126R
000066R
062073R
066074R
016003X
016004X
126016R

000000

000000
000002R
000000
000000
000076R
000000
000000
000000
177764

LU#
FMT
PARAM
CWRIT

NOP
NOP
BSS
NOP
JSB
DEF
DLD

JSB
STA
LDA
INA
STA
LDA
STA
LDA
STA
CLB
STB
LDA
STA

12

.ENTR
LU#
LU#, I

IFIX
LU
FMT

[FMT
=D-12
PCNT
DPRAM
[PRAM

PMCNT
IARR1
[ARR2

LIST LU
ADVANCE PAST STRING COUNT

TOTAL # OF PARAMETERS

PARAM COUNT

NUMB OF PARAMS AND STORE [N ARRAY

LooP

ON

EOL
LU
A

PCNT
DPRAM
1PRAM
PMCNT
T1ARR1
IARR2
ARRAY
IFMT

LDA

SZA,

JMP
DLD

DST

1s2
152
152
1s2
1s2
JMP

LDA
CLB
JSB
DEF
DEF
LDA
LDB
JSB
JSB
JMP

NOP
EQU
NOP
DEF
NOP
NOP
DEF
NOP
BSS
NOP

END

[PRAM, |
RSS
ON
A,l

1ARR2,]

PMCNT
IPRAM
IARR2
1ARR2
PCNT
LoopP

Ly

.DIO.
IFMT, I
EOL
PMCNT
T1ARR1
.RAR,
.DTA.
CWRIT, T

PARAM

ARRAY
24

USER’S QUEUE

Still another letter comes from John Gwyther of the Melbourne (Australia) Eye and Ear Hospital.

“Have you ever found 6 character file names a restriction for identification purposes? For example, if each user makes a source
file name begin with “&” and then puts his initials in character positions 2 and 3, it leaves only 3 characters to construct a
meaningful name. The spool procedure below replaces security codes user names, thus identifying the file owners and
initiating a method for purging unknown files.

The system manager should assign users their individual codes (could be their initials). The only system requirement is the
presence of spooling. To use the procedure.

#+RU,J0B,DLIST

where the file DLIST is given below. A sample output follows the listing of the DLIST file.”

:JOB,DLIST

:Sv,2,,IH

:##+ THIS JOB WILL PRODUCE A DIRECTORY LISTING WITH SECURITY CODES
:#+ REPLACED BY USER’S NAMES.

:##+ FIRST SET UP A SPOOL FILE FOR LU 6,

:LL,6

:PU,DIRLST:RT:-3

:CR,DIRLST:RT:-3:4:48

:LU,6,DIRLST:RT:-3,WRST

:#+ PUT OUT SOME HEADER INFORMATION

AN, 2%

:AN,+#+ THE FOLLOWING DIRECTORY LIST CONTAINS USER NAMES RATHER THAN
:AN,##+ SECURITY CODES.

:AN,+++ PLEASE CHECK THROUGH THE LIST AND PURGE ANY OF YOUR FILES
:AN,+++ WHICH YOU NO LONGER REQUIRE.

tAN, 22 s

:#+ NOW OUTPUT SOME DIRECTORY LISTS.

:DL,-46,AA

:#++ CLOSE THE SPOOL

:CS,6,EN

:## RUN THE EDITR IN BATCH MODE - COMMANDS REALLY COME FROM THIS
:#++ PROCEDURE FILE, AND WILL MODIFY THE COMPLETED SPOOL FILE.
:RU,EDITR,S

DIRLST:RT:-3

W21,29

221076/SYSTEM

1

219010/JIM B.

1
216716/AL LIU

1
221574/70DD F
1
216708/ AUDREY

1
217738/EIKO J
1
219789/MIKE/M

1

ER

:#+ LIST THE NEW DIRECTORY FILE
:LI,DIRLST

:E0QJ,DLIST

+ &8

USER'S QUEUE

#s++ THE FOLLOWING DIRECTORY LIST CONTAINS USER NAMES RATHER THAN
+++ SECURITY CODES.
ss+s+ PLEASE CHECK THROUGH THE LIST AND PURGE ANY OF YOUR FILES
s++ WHICH YOU NO LONGER REQUIRE.

+ &%

CR=00460
ILAB=LU46
NAME TYPE
BATCH 00004
&ANSKR 00003
&MAKE 00004
&PAGE 00004
&D.01 00004
4D.02 00004
410CB 00004
4D.00 00004
&LOADA 00004
&LOADB 00004
&LOADC 00004
&LOADD 00004
&10C" 00004
&10CB’ 00004
&PCS 00004
4D.23 00004
COMND 00004
&*TAM 00004
s&L6S 00004
%.10C. 00005
Z#TAM 0000S
XTEXEC 00005
LRFAIN 00005
xD.6S 00005
%D.00D 0000S
XL6S 00005
$YSLB 0000S
$ALRN 00005
RNRQ 00005
LURQ 0000S
PRTN 0000S
EQLy 00005
.DRCT 00005
COR.A 00005
KCVT 00005
CNUMD 0000S
CNUMO 00005
INPRS 00005
“DFINE 00004
WELCOM 00004
4D.00D 00004
&.10C. 00004
&TEXEC 00004
&RFAIN 00004
&LOADR 00004
4D.65 00004

NXTR=0071 NXSEC=084 #SEC/TR=096 LAST TR= 0202 #DR TR=02

00002
00028
00016
00005
00045
00040
00086
00070
00080
00080
00080
00078
00053
00127
00402
00147
00001
000SS
00033
00004
00006
00023
00013
00016
00007
00004
00001
00002
00003
00004
00002
00002
00001
00001
00001
00001
00001
00002
00104
00001
00051
000SS
00196
00098
00316
00143

29727229

292299
2979279

MIKE M
SYSTEM
AL LIU
AL LIU
EIKO J
AUDREY
TODD F
JIM B.

0000
0000
0002
0003
0003
0004
0005
0006
0008
0009
0011
0013
0014
0016
0018
0033
0036
0045
0049
0049
0049
0050
0050
00S0
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0051
0053
0053
00SS
0056
0060
0062
0068

000
006
078
014
024
018
002
078
026
090
058
026
086
000
062
058
064
076
014
080
088
004
050
076
012
026
034
036
040
046
054
058
062
064
066
068
070
072
076
092
094
004
018
026
030
086

#BLKS/LU SCODE TRACK SEC OPEN TOD

SPECIAL ANNOUNCEMENT

New Software Support
Program Now Available
for HP 1000 System Users

by George Taylor

A new software support program which covers its HP
1000 Computers and Computer Systems is now in effect.
This program provides for six catagories of software as
well as defining three levels of available support services.
This program will enable customers to obtain software
and manual changes resulting from product enhance-
ments and updates. By purchasing the highest level of
service a spedific telephone “hot line” is provided for tele-
phone access to the Phone-In-Consulting Service. This
contact will provide a link to a Systems Enginer to allow a
maximum of four (4) hours response regarding questions
on the use of Hewlett-Packard software.

SOFTWARE CATEGORIES — Each software product
available for HP 1000 system users has been assigned to
one of six categories to provide a basis for defined software
support services. The ACTIVE category defines software
which Hewlett-Packard intends to enhance. Also, all
discrepancies found in software within in this category
will be resolved. Software in the MATURE category will
not be enhanced but descrepancies will be resolved. A
COPIED category results from a customer reproduction of
either Active or mature software as a result of having
purchased the right-to-reproduce product. The OBSO-
LESCENT software category defines software which is no
longer available except as replacement parts, and CON-
TRIBUTED software which will be available from the
Library of Contributed User Software (LOCUS) program

as in the past. The SPECIAL software category includes
only that software designed for an individual customer,
with no enhancements planned, but where discrepancies
will be resolved.

SOFTWARE SERVICES — Three levels of software
support services have been made available to software
users. These levels permit the user to select only those
support services which are necessary based on user exper-
tise or experience with HP 1000 Systems.

The SOFTWARE NOTIFICATION SERVICE has been
designed for the self sufficient customer who only wants to
monitor software product activity but is not interested in
upgrading software in the near term. This service includes
six issues of the Communicator 24 issues of Software
Status Bulletins that give corrections for reported de-
screpencies in software and manuals, and four Software
Updage Notices which explain changes to current
software/firmware and manuals.

The SOFTWARE SUBSCRIPTION SERVICE provides
revised software on the medium selected by the user, as
well as technical manual changes. Operating System
Software Subscription Service includes the Software
Notification Service.

COMPREHENSIVE SOFTWARE SUPPORT has been
designed for those users who want the highest level of
assistance from Hewlett-Packard. t includes the Software
Subscription Service already described, and a Phone-In
Consulting Service. This service permits telephone access
by your System Manager to a trained Hewlett-Packard
Systems Engineer who can help resolve questions directly
related to the use of Hewlett-Packard supplied software.

Your Sales Representative can provide you with order-
ing information for ech of the products covered by this new
program. If necessary, the Systems Engineer will visit the
user to help resolve questions concerning HP software.

OPERATING SYSTEMS

RTE-IV — LOGICAL AND PHYSICAL MEMORY ORGANIZATION

David L. Snow

RTE-1V is Hewlett-Packard's latest disc based operating system for its HP 1000 family of computers. This is the first in a series of
articles by the RTE-IV development team which will discuss various RTE-IV structures and processes. This article concentrates
on the differences between memory structures in RTE-IIl and IV. Future articles will discuss topics such as /O and Memory
Reconfiguration, EMA Firmware Algorithms, User Partition Management, etc.

RTE-1V, announced in April 1978, is Hewlett-Packard's newest operating system for managing up to 2 Mbytes of memory in the
HP 1000 series of computers. Besides supporting all the capabilities of its predecessors, RTE-Ii and Ili, RTE-IV adds several
significant enhancements. These inciude the following:

a.

b.

Guaranteed user code area of 54 Kbytes regardless of future increases in system code area or the addition of new drivers.
User data areas resident in memory of up to 2 Mbytes with access transparent to the FORTRAN user.

Detection and removal from usage of defective pages of memory found by the operating system in the use's memory area.
I/O and memory reconfiguration at boot-up.

Improved Multi-Terminal-Monitor management with automatic creation of individual copies of user programs.

I/O from and to files for FORTRAN, Assembler and Loader operations.

A powerful assembly language level debugger routine.

DESCRIBED BY THREE POSSIBLE CONFIGURATIONS DESCRIBED
SYSTEM MAP BY USER MAP
(* A (& = N
RT AND BG LARGE BG
SYSTEM MEMORY RESIDENT DISC RESIDENT DISC RESIDENT
|
SAM EXTENSION : w
A }
‘ | MEMORY RESIDENT
SAM | w PROGRAMS REAL-TIME (TYPE 2)
| AND BACKGROUND (TYPE 3}
| DISC RESIDENT
PROGRAMS
l A T 0 LARGE
: | BACKGROUND (TYPE 4)
SYSTEM w MEMORY w DISC RESIDENT
: A RESIDENT LIBRARY % PROGRAMS
t \ A T 0
I |
TABLE AREA I | W TABLE AREA II : w Q TABLE AREAIl | w
1 | 3
N o]
| | z |
SYSTEMDRIVER | SYSTEM DRIVER | > SYSTEMDRIVER |
AREA | AREA | AREA)
N) A | A | A
BG COMMON | BG COMMON o BG COMMON BG COMMON
—————————————————————————— 5 bpmrm———=-=———=l0|l5 p~———=—==—=——J0| 5
RT COMMON | W RT COMMON c RT COMMON o 2 RT COMMON 2
———————————————————————————— oo FP—————— —— = w [——m—————————-—0 »
SSGA { SSGA S SSGA b SSGA m
s A 0 A 07 P4 o/ ©
DRIVER PARTITION DRIVER PARTITION DRIVER PARTITION DRIVER PARTITION
A A A A
SAM SAM SAM SAM
TABLE AREA | TABLE AREA | TABLE AREA | TABLE AREA |
A A A A
SYSTEM BASE PAGE MEMORY RESIDENT DISC RESIDENT DISC RESIDENT
BASE PAGE BASE PAGE BASE PAGE
(1) 2) 3) (4)

= >
o

PAGE BOUNDARIES
WRITE PROTECT
MEMORY PROTECT FENCE SETTINGS

Figure 1. RTE-IV Word Logical Memory Configurations

o

9

OPERATING SYSTEMS

A major difference between RTE-IIl and IV is in the structuring of logical and physical memory. This was necessitated by a
desire to reduce to a minimum the amount of user area occupied by portions of the operating system. Figure 1 shows the layout
of logical memory for the RTE-1V operating system map and for memory maps associated with type 2, 3, and 4 programs. For
comparison, Figure Il shows similar maps for RTE-IIl. Out of the operating system, only commonly used entry points (e.g.,
EXEC, $LIBR, $LIBX) and constants (e.g., SOPSY, $TBxx) are included in all maps. These entry points and constants along with
all /0 tables (Device Reference Table, Equipment Table and Interrupt Table) are included in a new area called Table Area |.
This insures that most user programs requesting Executive services and most user drives accessing data in /O tables will
execute in all RTE-IV addressing spaces without the need of recoding the process.

DESCRIBED BY

SUBSYSTEM GLOBAL

SUBSYSTEM GLOBAL

SYSTEM MAP TWO POSSIBLE CONFIGURATIONS DESCRIBED BY USER MAP
A A
r N r MEMORY DISK RESIDENT
RESIDENT PROGRAM &
SYSTEM PROGRAM COMMON
UNUSED AREA
READ WRITE
PROTECTED
MEMORY
RESIDENT
SYSTEM . DISK
AVAILABLE . RESIDENT
MEMORY . PROGRAM
MEMOAY RES -
DENT PROG 2
MEMORY RESI-
DENT PROG
4
BG COMMON BG COMMON
___________ PR E R ———
(COMMON ;
OPTIONAL N RT COMMON RT COMMON
___________ 4d - --44
SYSTEM MAP)

RESIDENT LIBRARY

RESIDENT LIBRARY

RESIDENT LIBRARY

SYSTEM

SYSTEM

SYSTEM

COMMUNICATION
AREA. SYSTEM
LINKS, & RESIDENT
PROGRAM LINKS

COMMUNICATION
AREA. SYSTEM LINKS
& RESIDENT PROG
LINKS

COMMUNICATION
AREA. SYSTEM LINKS
& PROGRAM LINKS

(1

(@)

(3

Figure 2. RTE-Ill Logical Memory Configurations

10

INDICATES POSSIBLE
4 MEMORY PROTECT
FENCE SETTINGS

A POSSIBLE PAGE ALIGNMENTS

OPERATING SYSTEMS

A second area of memory normally two pages in length is included in all addressing spaces and called the driver partition area.
At generation time, all drivers are grouped via a best fit algorithm into two page partitions. In physical memory these partitions
are placed immediately following system-available-memory (see Figure Ill). New Driver Mapping Tables, one associated with
each Equipment Table entry, indicates which driver is contained in which driver partition. Whenever an /O request is
processed, the appropriate driver partition is mapped into the user or system addressing space prior to the driver’s execution.
This insures that only the driver actually in use is included in the appropriate addressing space.

The reduction in system size made possible by Table Area | and the reduction in driver area made possible by driver partitions,
allows RTE-IV to specify a guaranteed user coding area of 54 Kbytes for type 4 programs.

Another area of memory called Table Area |l which contains lesser used system entry points and constants (e.g., SMATA,
$TIME, $BATM) and other system tables (e.g., ID segment table, class number table, resource number table) was created and
included in the addressing space of the system and type 2, 3, and, optionally, type 1 programs. This area insures that all

previously written user programs for RTE-lll which access these areas will execute properly.

A second driver area, the System Driver Area, is included in the addressing space of the system, type 2, 3 and, optionally, type
1 programs. This area was created for privileged drivers (which must always be in the system map), drivers which do their own
mapping and drivers larger than the driver partition size (usually two pages).

With the System Driver Area, Table Area Il, Driver partition Area and Table Area |, the addressing space of type 2 and 3
programs will typically be 40 Kbytes, up from the 28 to 32 Kbytes associated with RTE-III.

Within the system map, RTE-IV provides three areas of memory which make up system-available-memory (SAM). At boot up,
the first three pages of physical memory following the system area are used for I/O and memory configuration. After bootup, this
area is allocated to SAM. The user can at generation optionally declare a SAM extension. This area, although contiguous to the
first SAM in the system’s logical memory, is actually located in physical memory between the Memory Resident Program area
and the User Partitions. In addition, the unused portion of the last page occupied by Table Area | is included in SAM.

User Partition M (1M <.64)

User Partition 1 (& user BP)

SAM Extension

Memory Resident Programs

Resident Library

Memory Resident Base Page DISC RESIDENT PARTITION m
Driver Partition n BASE PAGL
.
.
Driver Panition 2 .
System Available Memory .
Di5C RESIDENT PARTITION 1
Operating System - ————— -y
BASE PAGL
Table Area Il
SYSTEM AVAILABLE MEMORY
System Driver Area
\ MEMORY RESIDENT PROGRAMS
Background \
i \ BG COMMON
Real-Time COMMON e e e e — e _—— R—
— — — — — — — / T o)
Subsystem Global Area /2 I R_' 'C-OlN\iOE —_— E(’_YM_Oi_
/ o
Driver Partition 1 SUBSYSTEM GLOBAL ARFA
System Available Memory MEMORY RESIDENT LIBRARY
Table Area | SYSTEM
System Base Page SYSTEM BASE PAGE
Figure 3. Physical Memory Allocations Figure 4. RTE-Ill Physical Memory Allocations

11

OPERATING SYSTEMS

Figure 1l shows the physical memory layout of RTE-IV. For comparison Figure |1V shows the layout for RTE-Ill. The major
differences are the positioning of Common before the system, the positioning of drivers in driver partitions and the creation of
the SAM extension after the memory resident area.

In conclusion, RTE-IV has restructured the logical memory maps associated with the system and user areas in order to
maximize the user's addressing space. Next month's article will discuss the management of data areas of up to 2 Mbytes by

firmware routines.

PHYSICAL PAGE 0
OR

SYSTEM BASE PAGE

SYSTEM
COMMUNICATIONS

DRIVER, COMMON, AND
TABLE AREA LINKS

UNMAPPED

PORTION

BASE PAGE FENCE P

SYSTEM LINKS

/0 TRAP CELLS

MAPPED
PORTION

LOGICAL
BASE PAGE

SYSTEM
COMMUNICATIONS

DRIVER, COMMON, AND
TABLE AREA LINKS

USER LINKS

MAPPED

PORTION

Figure 5. System and User Base Pages

12

MEMORY RESIDENT PROGRAM'S

BASE PAGE

J

MEMORY
RESIDENT
PROGRAM

AND
LIBRARY
LINKS

DISC RESIDENT PROGRAM'S

BASE PAGE

o

-

DISC
RESIDENT
PROGRAM

LINKS

OPERATING SYSTEMS

KNOW YOUR DS/1000, PART |

Al Liu/DSD
This is the first of a series of articles on the internals of the DS/1000 software. To comprehend these articles requires a basic
understanding and knowledge of DS/1000 which is described in the DS/1000 Programmer's Reference Manual and the
DS/1000 Network Manager's Manual.
The intention of this article is to provide an introduction to the internals of DS/1000 by giving:

A. a description of the layered architecture of DS/1000 software modules.

B. adescription of the transaction flow from a DS/1000 source node to a DS/1000 destination node by tracing a CALL DEXEC
(2) as an exampile.

NOTE!!
DS/1000 software is supported by HP only at the user interface level documented in the DS/1000 Programmer’s Reference
Manual. Subroutines not documented which are described or mentioned herein or elsewhere in the series, must never be called
directly from a user program. They are not supported by HP when used in such manner. They are described or mentioned
solely for the purpose of illustration. Their functions and calling sequences are subject to change without notice to any user.
The second article in this series will describe:

a. the lists and the nodal entry points in the resident subsystem global area (SSGA) module called RES.

b. a node's initialization by LSTEN.

A. THE LAYERED ARCHITECTURE OF DS/1000

[The following diagram and some of the terminologies are from pages 4 and 5 in the "Distributed Systems/1000 Technical Data”
brochure (part number 5953-0868).]

DS/1000 is composed of layers of software modules. Each module is designed to perform a special task (i.e., task-oriented) for

a certain level of processing of a transaction. Modules processing at the same conceptual level on both sides of a link are

classified into a layer.

The bases for this architectural design are:

1. Tominimize the occurrence of any “bottleneck” condition in communicating with multiple users and/or nodes in a network.
Most of the modules are serially re-usable, each module for a task at a time. By the fact that each module is dedicated to
perform a specific task, its processing is minimized so that it will be available as soon as possible for the next calier.

2. To allow new kinds of link to be added in the future without affecting user's program codes.

The DS/1000 software modules are “layered” as in the following diagram.

13

OPERATING SYSTEMS

RTE-M/RTE-1Il OPERATING SYSTEM

Master
requests
v -

User's
Remote Programs,
Operator incl. Master

Commands PTOP

Programs

! 1

Network Service Intrinsics/1000
(NSI/1000)

Communications Management/1000

(CMi1000)
Communications Access
Method/1000 (CAM;/1000) Store and
e N Forward
Torfrom other Intertace
network nodes hardware
N

Network Interface Monitorsi1000
(NIM/1000)

T 11

User's

File slave RTE
manager PTOP EXEC
Programs

N\
Slave
replies

The Network Service Intrinsics/1000 (NSI/1000) Layer
The Network Service Intrinsics (NSI/1000) are:

1.
2.

called from user's programs or by operator commands in REMAT and RMOTE,
to generate the transaction format for master requests to remote nodes, with data as required.

The user program calls are in the forms of DEXEC, PTOP, RFA and some remote utility calls. The NSI/1000 modules are type 7
subroutines (i.e., utility subroutines) which are appended to the user program that calls them.

The results from executing each of these subroutines are:

® A ‘“request buffer” is set up for the respective request according to the formats specified in Appendix A in the *“DS/1000
Network Manager's Manual” (part number 91740-90003).

® The request buffer is then passed down to the Communications Management (CM/1000) layer as a parameter in a direct
call to the appropriate CM/1000 module.

e A data buffer may or may not accompany the request buffer, depending on the nature of the request. For example, CALL
DEXEC (2) for remote write is accompanied by the data buffer that is to be sent. CALL DEXEC (1) for remote read does not
have a data bufer sent with its request buffer.

®

The request buffer initially is local to the NSI/1000 subroutine and the data buffer, if any, resides in the calling user program.

However, when they are passed to the CM/1000 layer, they are copied to a class buffer in system available memory (SAM)
as the result of a class write-read call.

14

. OPERATING SYSTEMS

Computer

- Museum

The Communications Management/1000 (CM/1000) Layer

This is the heart of communication processing through which all outgoing and incoming transactions must pass.

e The outgoing transactions originate either from the NSI/1000 layer if they are master requests, or from the Network Interface
Monitors/1000 (NIM/1000) layer if they are slave replies. They are routed to the drivers (DVAB5 or DVGET) in the
Communications Access Method/1000 (CAM/1000) layer for outputs.

e Allincoming transactions enter the system via the CAM/1000 layer. They are routed to the NSI/1000 layer if they are slave
replies to complete the original master requests or to the NIM/1000 layer if they are new master requests received.

The following table presents the names of the modules in CM/1000 layer and their positions in the transaction flow.

NSI/1000 NIM/1000 CAM/1000

AN VAN

CM/1000 Layer

Outgoing Transactions Incoming Transactions
Master Request Slave Reply Master Request Slave Reply
De5MS D53V QUEUE QUEUE
1000 link GRPM GRPM
DesGT
D3KMS RPCNV QUEZ QUEZ
3000 link QUEX QUEX QUEX QUEX
RQCNV D3KMS

CM/1000 Layer

% ~

CAM/1000 NIM/1000 NSI/1000

The CM/1000 also manages all store-and-forward operations. For example in a DS/1000 to DS/1000 communication link, when
GRPM detects that an incoming transaction is not destined for the local node, it will “forward” that transaction according to its

nodal routing vector table to the next node. It willimmediately route that transaction as an outgoing transaction to DVAG5 in the
CAM/1000 layer to be sent out.

The Communications Access Method/1000 (CAM/1000) Layer

The modules in this layer are the software and firmware drivers:
The driver for the DS/1000 link is DVA65 and the microcoded firmware.
For the DS/3000 link, DVG67 is the physical driver, HSLC is the logical driver and D$EQT is the EQT extension for DVG67.

CAM/1000 provides a line protocol for the control of communications input and output, including error checking and corrections
by retransmissions at the line level. Here it provides the first level of error retries. A transaction can be retransmitted up to 7
times before exiting the driver to go back to the CM/1000 layer for the second level of error retry.

15

OPERATING SYSTEMS

The Network Interface Monitors/1000 (NIM/1000) Layer

These are the software modules that receive their respective incoming master requests destined for the local node from the
CM/1000 layer and process them. They are also called slave monitors because they are activated and function according to the

master requests directed to them from remote nodes.

Processing means linking a master request to one of the following:

® RTE EXEC if they are DEXEC requests (and remote utility calls),

e FMP if they are RFA requests,

® user programs which are slaves to the remote master programs in program-to-program communication if they are PTOP

requests,

When RTE EXEC, FMP or the user programs complete their functions requested of them, their results are passed back to the
respective NIM/1000 modules which in turn send the results as outgoing slave replies back to the source node.

The NIM/1000 modules are:

EXECM DLIST

EXECW PROGL
RFAM OPERM
PTOPM CNSLM

Two other monitors do not send slave replies. They are used in error conditions only. QCLM prints error messages for GRPM,
which is a CM/1000 module, and RTRY aids the second level error retries of outgoing transactions for GRPM.

B. THE TRANSACTION FLOW BETWEEN DS/1000 NODES

A transaction which initiates an interaction with a remote node is known as a MASTER REQUEST. The master request is not
completed until its SLAVE REPLY from the destination node is received without error back at the source node. (It may also be
“completed” when it times out.) Therefore, any outgoing master request expects an incoming slave reply at a deferred time in
order for it to complete. Similarly, an outgoing slave reply is the response to an earlier incoming master request to complete that
request at the remote source node.

Let us trace the CALL DEXEC (2) for remote write from a DS/1000 node to another DS/1000 node in order to describe in detail
the transaction flow. The following diagram is a pictorial representation of this flow. By the side of each flow path is an
explanation of how the transaction is being passed to the next module.

In the descriptions that follow, you will find frequent mentions of requeueing a transaction from a class to another class or to an

EQT. This is a clever scheme designed into DS/1000 software to conserve the usage of SAM (system available memory) and to
minimize the system’s overhead while a transaction is passed from one module to another. Once SAM has been granted as the
class buffer for a transaction when the transaction is initially formed, that class buffer is saved and passed from module to
module as it goes through the communication layers. Finally, after its contents have been sent out of the node, the class buffer

is released back to the blocks of free SAM in the system.

Requeueing, done by a privileged memory resident subroutine called #REQU, simply means moving the class buffer pointer
from the queue under a class number to another queue under the other class number or to an EQT’s (except an EQT for a disc)

gueue if LU has been specified. If a transaction is re-queued to an EQT which is not active, #REQU initiates I/O operation on the
EQT by calling a subroutine in RTIOC.

In this scheme, the succeeding processing modules do not request any more class buffers for the transaction, yet still can
make use of the mailbox I/O method. This reduces the possibility of impeding any transaction due to lack of SAM during the
intermediary transitions. It also avoids the overhead in intermediate allocations/de-allocations of class buffers and the overhead
in moving words from buffer to buffer.

16

OPERATING SYSTEMS

A PICTORIAL SUMMARY OF AN ERROR-FREE
TRANSACTION FLOW [DEXEC (2) CALL}

CALL D65MS(ICONW,IRBUF, DEXEC
RQLEN,MSG,MSGL,0,15)

CALL DEXEC(IDEST,2,ICONW,MSG,MSGL)

Flow starts here

Class write-read D65MS gggg RAM <: .
ends here

to the link LU
to send out the
master request Returns from class GET suspend.
Exits back to the user program.
_ - DVA65 D65GT
GRPM -
Outpult tion . Re-queues the slave reply to the
Ccompletio master request’s class.
GRPM Returns from
releases class class write-read GRPM
buffer on and does a class »)
successful GET QUEUE initiates reading the
ands | A lave reply from the li
output Suspends in slave reply from the link LU
state 3 waiting and using mailbox /O, routes
for slave reply it to GRPM.
QUEUE
After exchanging A
protocols, the message Schedulgs QUEQE upon a new
is sent out by the transaction received.
driver firmware.
DVAB5
A Interrupts driver in RECEIVE mode
Interrupts driver
in RECEIVE mode
] GRPM
. 4 releases
- class
DVAB5 DVA65 -
Output
Schedules QUEUE \ completion
upon a new transaction
received. Y After processing the master request,
the results are sent by EXECM
QUEUE as a slave reply. EXECM class-writes
Class read from the the slave reply to the link LU.
link LU to GRPM’s
class, #GRPM i
- Re-queues the message
GRPM - EXECM to the output LU
Re-queues
the master request RTE
to EXECM'’s class EXEC

17

OPERATING SYSTEMS

THE ORIGINATING NODE

1.

The

User Program
The user program initiates this flow by:

CALL DEXEC C(IDEST,2,1CONW,MSG,MSGL)

where

IDEST = the destination node number to which the message is addressed

2 = the code for “write” request

ICONW = the control word for the write request contains the output LU, e.g., a line printer, for the message at the
destination node (same as ICONW in CALL EXEC (2)).

MSG = the message buffer to be sent

MSGL = the length of the message (word count if positive, byte count if negative)

DEXEC Subroutine

(This is a type 7 subroutine and is appended to the user program.)

Major tasks:
a. Sets up the request buffer for the message destined for a remote node.

b. Calls D65MS subroutine, passing it the request buffer and the message for further processing.
format of the request buffer is in the following diagram. The asterisk denotes the word which is filled in by DEXEC.

REQUEST

word 0 Stream type = 5 *

Message length
(1st optional param)
(2nd optional param)

1 Sequence number

2 Source node #

3 Destination node # *
4 ICODE = 2 *
5 [CONW *
§)

7

8

[It first distinguishes whether the message is destined for a remote node or for the local node. “IDEST” in the calling
parameters is compared to the local node number specified in the nodal entry point #NODE in RES. If the message is
destined for the local node, it will be routed to RTE's EXEC or REIO subroutine to be printed. If “IDEST" is —1, the call is also
destined for local processing.

It calls D65MS with the following parameters:

ICONW = the control word passed from the user program

IRBUF = the address of the request buffer

RALEN = the request buffer length in word count

MSG = the address of the message buffer to be sent

MSGL = the message length

0 = the length of data to be read, which is zero in this case because in the write request, there is no data to be
read.

15 = the maximum length in word count of the slave reply to be received]

18

ORPERATING SYSTEMS

D65MS Subroutine

(This is a type 7 subroutine and is appended to the user program.)

Major tasks:

Allocates a class number for the master request.

Identifies the origination of the request by setting the local node number into the request buffer as the source node.

c. Registers the master request onto the list of master requests which have been initiated at the local node and which are
currently still outstanding (i.e., unreplied). (Each master request is represented by a transaction control block, i.e., a
TCB, in the programming logic.)

d. Sets a sequence number which is unique to each master request and slave reply, into the request buffer and into the
associated entry in the master request list.

This sequence number plays the important role of matching the outstanding master request with its slave reply when
the slave reply is received at a later time.

e. Converts the destination node number into its corresponding LU number by looking up the NRV table.

f. Sends the request and the message to the LU via the class write-read call, CALL EXEC (20). The request buffer and
the request buffer length are passed as “optional parameters” in the call. GRPM's class number is specified as the last
parameter in the call so that GRPM will process the 1/O completion status, and institute any transmission retries, if
required.

Upon returning from this class call, the request and the message buffers are copied into a SAM buffer allocated to the
master request’s class.

g. Calls D65GT to wait for the slave reply from the destination node. D65GT basically does a class GET on the master
request’s class. This causes the user program to be suspended in state 3 until one of the following occurs:

e The master request is timed out, or
e an error reject (“STOP”) from the destination node has been received, or
e the proper slave reply is received.
The format of a master TCB
#MRTH » Address of next master TCB or zero if this is the last. All TCBs have same format.
The list U | D | Timeout Counter
header in
RES Local Sequence Number
C | Master Class Number
B ‘ ID segment address of the master program
Legend:
U (bit 15): if set, it is a temporary bit used by UPLIN,
D (bit 14): if set, it means the request is a DS/3000 request either master or slave.
C (bit 15): if set, it means that a timeout of approximately 20 minutes is to be used (for an execute-with-wait).
B (bit 15): if set, it means the TCB is to be released by UPLIN next time when UPLIN runs.

19

OPERATING SYSTEMS

4. DVA65

The request and the message are routed to the driver via the class write-read call to the LU. After exchanging protocols
initially for handshaking with DVAG5 on the other side, the request buffer and the data buffer are output by the driver
firmware as the transmission text. DVAB5 regains control at the end of text and exchanges protocols to complete the
transmission with DVAG5 on the other side.

5. GRPM
GRPM comes out of its class GET suspension when the outgoing transmission is complete.

Major tasks:
a. If the transmission is without error, it releases the class buffer that contains the master request.

b. Ifthereiserrorin transmission or if the transmission has been rejected by a “remote busy” condition at the destination
node, GRPM determines if the retry count in the request has been exhausted. If retry is still possible, GRPM will
re-queue the request to a NIM/1000 module called RTRY so that RTRY can route the request back to GRPM at a later
time for the retry. If the request’s retry count is exhausted, GRPM passes an error to QCLM, a NIM/1000 module and
releases the request buffer in SAM.

c. In all cases, GRPM returns to a class GET suspension.

THE DESTINATION NODE
1. DVA65

The interface card at the destination node is enabled in the RECEIVE mode and is interrupted by the incoming request.

Major tasks for DVAB5 at this point:

a. Begins an exchange of protocols in order to handshake with DVAB5 at the sending node. The pending request is not
yet input at this time.

b. As part of the protocol exchange, checks the status of the program QUEUE which it is about to schedule, by
examining word 16 in QUEUE's ID segment. If the status indicates “not idle”, DVAB5 outputs “STOP” immediately to
the sending node to stop further transmission. (This is a cause of "Remote Busy” condition to the originating node.)

c. Ifthe status indicates QUEUE is idle, DVAB5 schedules QUEUE by calling $LIST with QUEUE’s ID segment address as
a parameter.

d. It then re-enables the interface card back to the RECEIVE mode before exiting.
2. QUEUE
It is scheduled by DVAB5 when a new transaction is to be read from a line.

Major tasks:
a. Performs validity checks on:

e the interrupt source being from an initialized link
e the data and the request lengths passed from DVAB5 via the link's extended EQT

b. Initiates a class read from the interrupting link's LU to GRPM's class designated by the class number in #GRPM, which
is an entry point in the subsystem global area (SSGA) initialized by LSTEN.

3. GRPM

When the class read initiated by QUEUE to read from the LU to GRPM's class is complete, GRPM will come out of its
suspend state 3 from a previous class GET call.

20

OPERATING SYSTEMS

Major tasks:

a. Registers the request as a task for the corresponding slave monitor (in this case, EXECM) to perform by adding it to the
list of tasks under the slave monitor. The slave monitor is identified by the “stream type” in the request buffer. The
following chart displays this association.

“Stream Type” Slave Monitor

01 DLIST

02 CNSLM
03 EXECW
04 PTOPM
05 EXECM
06 RFAM

07 OPERM
09 PROGL

“Stream type” 00, 08 and 10 are reserved for future expansion.

b. Re-queues the master request in the GRPM's class to EXECM's class in order for EXECM to process this requested
task.

c. GRPM returns to another class GET call and is suspended until another request is routed to its class.

The following diagram displays the format of a slave monitor's header for its list of tasks and the format of each task entry.
(A task is represented by a "transaction control block” (TCB) in the programming logic.)

List Header in RES Slave TCB in System Available Memory (SAM)
Address of the —»1 Address of next TCB in this stream type or zero
first TCB of this if last TCB in the list.

stream type

The slave monitor's U » D | Timeout Counter
class number

Local Sequence Number
A | monitor's 1D

seg address Origin Sequence Number

Origin Nodal Number

Legend:

A (bit 15): if set, it means the slave monitor may be aborted by UPLIN if the slave TCB is timed out.
U (bit 15): if set, it is temporary bit used by UPLIN.
D (bit 14): if set, it means the request is a DS/3000 request either master or slave.

EXECM

EXECM will come out of its class GET suspend state 3 when the request has been queued to its class by GRPM.

Major tasks:

a. EXECM determines the request, among all possible DEXEC requests, to be a “write to the specified LU at the node”.

b. The received message is then re-queued from EXECM’s class number to the output LU specified in the request buffer,
as a class write.

21

OPERATING SYSTEMS

C. Aclass GET on EXECM's class number follows in order to wait for the completion of the outputting of the message (or
for a new incoming master request).

d. When EXECM comes out of its class GET suspend, it de-allocates the task (i.e., the representing slave TCB) from its
list of tasks since it has completed the associated request.

e. EXECM re-uses the request buffer in SAM for its reply. Re-using this buffer is for conserving SAM usage and is the
reason why EXECM handles its own slave reply whereas other NIM/1000 modules call D85SV for theirs. The slave
reply is set up into the re-used buffer in SAM according to the following format.

REPLY

word 0 octal 40005
Sequence number
Source node #
Destination node #
ECOD1
ECOD2

A | ECOD3

DO WnN =

where

A = 0 indicates normal completion:
ECOD1 = status in EQT5
ECOD2 = transmission log
ECOD3 = node number where the reply originates

A =1 indicates error condition:
ECOD1 and ECOD2 contain 4-character ASCll message (as do A and B registers).
ECOD3 = the node number where the error occurred.

f. EXECM looks up the link LU for the originating node from the NRV table. Then it re-queue’s the stave reply to the link LU
to be sent on GRPM's class. (Here, DVAB5 will be activated for the outgoing reply transmission. Upon the output
completion, GRPM will be notified.)

g. EXECM goes back to its class GET and is suspended waiting for the next DEXEC request.

GRPM

When the slave reply has been completely output by DVA65, GRPM will be brought out of its class GET suspend. After it
has determined that a slave reply has been sent without errors, it releases the class buffer which has been allocated to the
original incoming master request.

GRPM returns to its class GET suspend to wait for next transaction.

THE WRAP-UP AT THE ORIGINATING NODE

1.

DVA65 and QUEUE

When the slave reply is received at the originating node, it is processed by these two modules in a manner similar to the
descriptions given for the destination node.

GRPM

When GRPM receives the incoming slave reply without any error, it searches the master request (represented by TCB) list
for one with the same “sequence number” and gets the class number assigned to the master request (specified in the
master TCB). GRPM, then, re-queues the slave reply to this master request class.

22

ORPERATING SYSTEMS

D65GT and D65MS

The user program has been in suspend state 3, resulting from D65GT's class GET call on the master request's class

number. When GRPM re-queues the slave reply to this master request class, D85GT regains control and then passes the
control to D65MS when it exits.

DB5MS determines that this is a good return (i.e., not time-out nor error return). It then does the final wrap-up of the
transaction flow by:

e clearing all pending writes or reads queued on the master request class,
® releasing the master request class buffer and class number

® removing the master request by de-allocating the master request TCB from the master TCB list, #MRTH.

D65MS, finally, exits back to DEXEC, which in turn, exits back to the user program, thus completing the transaction flow in a
full circle.

23

OPERATING SYSTEMS

USING CLASS 1/O FOR A TERMINAL HANDLER

Gary McCarney/Rockville

Introduction

class I/O is one method of performing input and output operations in an RTE system. A program initiating a class /O transfer
does not wait for the I/0 to complete. Using class /O, many transfers can be started by a single program without waiting for the
first transfer to complete. Later, using an appropriate request, the same program or another program can complete the
operation by picking up the data or just checking status. Most useful applications involve one program to initiate and one or
more different programs to complete the I/O. However, this article will develop an application where only a single program is
involved.

This intent of this article is to develop the need and usage of class I/0O by using a terminal handler example. Such a handler
might serve to control how much access a user may have to the various RTE tunctions and utilities. This presupposes that the
multi-terminal monitor (MTM) provides too little control between the intended user and the operating system. Various input
methods will be discussed and the need and uses of class /O will be developed throughout the article.

Class /O can be used for reading, writing and control requests. This article will discuss only the use of class I/O read requests
since this is the more usetul aspect for a terminal handler. Most output devices utilize the automatic output buffering feature of
RTE and programs do not wait for the device to complete the output transfer.

The reader is assumed to have attended one of the RTE training classes or to have the equivalent background.
Single Terminal System

When there is only a single terminal to be controlled by a user program, a dialogue could be established by using an EXEC call,
an REIO call or a FORTRAN READ statement. (A FORTRAN READ will, internally, generate a REIO call.)

Let's assume throughout that the program sends some message to the user indicating the input expected and then issues a

read request to the terminal. If an EXEC or REIO call is used for the input, the program will stop executing until the input is
complete. The driver will be set-up by RTE to transfer the input from the terminal directly to the program’s bufter (see Figure 1).

The executive request used is a read (EXEC 1) from the terminal (LU) with echo enabled (400B) so that the user can see what is
typed. The ASCII input data will be stored into array IBUF with a maximum of 36 words to be accepted.

PROGRAM TERM PROGRAM TERM
DIMENSION IBUF(36)
IBUF :
CALL EXEC(1,LU+400B,IBUF,36)
DRIVER
AREA
-—1+— TERMINAL
RTE
SYSTEM
Memory

Figure 1. Input Using an EXEC Request

While the user is typing, program TERM goes into an /O suspended state until the input has been completed (i.e., user types
RETURN). If the EXEC call is made, then while TERM is suspended, it is locked into memory and cannot be swapped because
the input is being written directly into the program’s space.

24

OPERATING SYSTEMS

Since swapping is normally desired in RTE, the fact that TERM is locked into memory is not acceptable. However, if the EXEC
call is changed to a REIO call, RTE will allocate an area in system available memory (SAM) that is the same size as the input
buffer (plus 7 words overhead). Then the data transfer will go into SAM until the input is complete. In either case (EXEC call or
REIO call) the program waits for the I/O to complete but while using REIO it can be swapped. On completion, RTE transters the
input buffer from SAM to the program's buffer and returns the SAM buffer for other use (see Figure 2). Note that the only change
required in the program is to change the letters EXEC to REIO.

PROGRAM TERM PROGRAM TERM
DIMENSION IBUF(36)
IBUF .
I Transter
SAM at end :
of input CALL REIO(1,LU+400B,1BUF,36)
hn Transfer
during
DRIVER nput
AREA

-«—4—— TERMINAL

RTE
SYSTEM

Memory

Figure 2. Input Using An REIO Request

Multiple Terminal System

A problem exists if a second terminal to be controlied by program TERM is added to the RTE system. Program TERM can input
a record from only one terminal at a time since TERM goes into a suspended state waiting for the input to complete. If it is
desired for both terminals to be communicating simulateneously, two versions of TERM are required — TERM1 and TERM2.
Both versions are identical except for the program name and the terminal number being used. As more terminals are added to
the system, more copies of TERMx are required. This would use one 1D segment for each copy of TERMx plus one or more disc
tracks would be needed for each swapped copy. To prevent using multiple 1D segments and swap tracks, we need some way

to initiate multiple input transfers to buffers in SAM. In addition we need to control these transters by an interaction between RTE
and a single program.

Using SAM for Multiple Input Buffers

Let's assume that our RTE system has three terminals that we wish to be controlled by one program. Arbitrarily assign terminal
logical unit numbers of 15, 16 and 17. What we wish to do for each terminal is:

1. Output instructions to the user
and
2. Initiate a read from the terminal.

Since the input from each terminal must be stored into a buffer in memory, we need some way to “borrow” the use of some SAM
for these inputs. Further, we wish program TERM to be swapped while the input is taking place. Figure 3 illustrates the desired
principles so far.

25

OPERATING SYSTEMS

PROGRAM TERM
l IBUF
SAM //
- - Terminal
- LU 15
DRIVER - Ti[j“‘”sa'
AREA . !
17 16 15
Terminal
RTE LU 17
SYSTEM
Memory

Figure 3. Using SAM For Input Buffers

Program TERM should go into an [/O suspend state until at feast one of the three inputs is completed. Since SAM is used for the
buffers, TERM can be swapped. Eventually all three SAM buffers will be transferred to array IBUF (one at a time). For RTE to
manage SAM, some means of linking these buffers together is required. Let's link all three together in such a way that TERM can
retrieve the first completed response. To facilitate the retrieval of the completed buffers a single numeric value will be
associated with these linked buffers. Program TERM can then ask RTE if there are any completed buffers linked to this
number. This number will be referred to as the “class number”. The total class numbers available to be used are assigned
during system generation. Class numbers are assigned from this table. (See Reference 2 for a detailed description of this
assignment.) Programs must first request a number from RTE and then use the number throughout its execution.

RTE uses a speciaf form of an EXEC request for allocating or using existing class numbers. Both allocation and linking are
performed using this special EXEC request. An example and explanation of TERM to illustrate this follows:

PROGRAM TERM
DIEMNSION IBUF(36),ILU(3)
DATA ILU/15,16,17/

ICLAS=0

DO 400 I=1,3

LU=ILUCIC

WRITECLU,200)
200 FORMAT("INPUT DESIRED TASK')

CALL EXEC(17,LU+400B,IBUF,36,...,ICLAS)
400 CONTINUE

TERM first stores the three terminal LU numbers into array ILU. During execution of the do loop, a message is written to LU 15
and the EXEC 17 sets up a class /O read request. The EXEC 17 has three of the first four arguments the same as the EXEC 1
call. However, the EXEC 17 call has several additional arguments. ICLAS is the last of these arguments and is the only one
discussed now. Since ICLAS is zero, RTE allocates a class number from the class number table which was set up at system
generation. Then RTE allocates a buffer of 44 words in SAM (36 words for data plus a header of eight words to keep track of the
request), performs the necessary linking and requests that the driver initiate a read on LU 15. The second time through the DO
loop, ICLAS is not zero because RTE overwrote the variable address ICLAS with the allocated class number. Since the class
number exists, each new buffer is allocated from SAM and linked appropriately.

26

OPERATING SYSTEMS

The next thing TERM does is to request that a completed buffer be transferred from SAMto array IBUF. This is accomplished by
TERM asking RTE to "get” the first completed buffer on TERM's class number. If no completed buffers exist, TERM has the
option of either being put into a general wait state until a buffer is completed or continue other processing. If an input is
complete, data is transferred to IBUF. If multiple completed buffers are ready, RTE will link them together such that TERM would
get the buffers one at a time in the order they were completed (see Figure 4).

PROGRAM TERM | Transfer takes place from first
I IBUF completed buffer with “get” call
SAM /
Links
\ - - Terminal
- LU 15
Class > -
Table L Terminal
DRIVER - ﬁum;”ea
AREA I
17 1i 15
L¥ Terminal
LU 17
TERM's RTE
Class SYSTEM
Number Memory

Figure 4. Using Class /O For Input Buffering

It is important to realize that every class I/O request will require two executive requests within a program to complete a transfer:
one to initiate the action and one to complete.

After program TERM gets a completed buffer to process, TERM may wish to output some acknowledgement and then initiate
another input. However, which terminal should TERM use to send the response? Some way is needed to pass the originating

terminal logical unit (LU) along with the data buffer. The class /O read request (EXEC 17) has two additional arguments

available for the programmer's use. These two arguments can be used for any two values the programmer desires. In the TERM
example, let's use one of these arguments to pass the terminal LU along with the buffer. Perhaps we would use the second
argument as a count of how many inputs have been typed from each terminal. For example:

PROGRAM TERM terminal LU
DO 400 1=1,3 first input
LU=ILUCT)

WRITE (LU,200)
200 FORMAT(“INPUT DESIRED TASK*)

CALL EXEC(17,LU+400B,IBUF,36,LU,1,ICLAS)
400 CONTINUE

c FDLLUI:JING STATEMENT RECEIVES DATA

CALL EXEC(21,ICLAS,IBUF,36,JLU,KOUNT)
. input request number

input terminal LU

27

OPERATING SYSTEMS

Note that the class /O GET call (EXEC 21) will retrieve the terminal number in JLU and the buffer count in KOUNT. When a
completed buffer is transferred on a get call, the SAM that was used is returned to RTE and the buffer is linked to the
appropriate class number.

A word of caution about the EXEC 21 call. If the execution of the class I/O get call retrieves the last outstanding request, then the
class numberin use is returned to RTE to be reused. Subsequent get calls on the same class number will result in TERM being
aborted. To prevent the release of the class number, the second parameter in the get call must have bit 14 set. This indicates to
RTE that if this get call is retrieving the last request outstanding, do not return the class number.

Program TERM now examines the input request received on the get and takes whatever action is required. Another class I/0
read might then be issued to that terminal for the next input. The program simply returns to the EXEC 21 call to wait for another
completed buffer. The complete source code for TERM iilustrates all of the principles discussed.

FTN4,L
PROGRAM TERM
DIMENSION IBUF(36),ILUC3)
DATA 1L0/15,16,17/
ICLAS=?
DO 400 1=1,3
LU=ILUCT)
WRITECLU,200)
200 FORMAT("INPUT DESIRED TASK")
CALL EXEC(17,LU+400B,1BUF,36,LU,1,ICLAS)
400 CONTINUE
500 CALL EXEC(21,ICLAS,IBUF,36,JLU,KOUNT)

(proéess request)
WRITECJLU,600)
600 FORMAT(ONEXT?-"")
CALL EXECC17,JLU+400B, 1BUF,36,JLU,KOQUNT+1,ICLAS)
GO TO So00

END
ENDs$

Conclusion

The intent of this articie is to introduce the programmer to one method of using input transfers without wait. This is known as
class /O in RTE. While this article will not answer all the questions one might have pertaining to terminal handler programs,
hopefully it will serve as food for thought in the solution of muiti-terminal handlers.

This is the first in a series of articles examining the use of class /0. Subsequent articles will cover class 1/O Mailbox versus
system common and class /O double buffering.

References.

1. Anzinger, GA. and Gadol, A.M. A Real-Time Operating System With Multi-Terminal and Batch/Spool Capabilities.
Hewlett-Packard Journal, December 1975, pp. 12-20.

2. Bridges, J. RTE/Il/II Class Table Structure. Computer Systems Communicator, 1976, Issue No 8, pp. 367-368.

3. Bridges, J. How to Use Class /O and Resource Numbers in a Sort Application. Computer Systems Communicator, 1977,
Issue No. 16, pp. 19-21.

28

OPERATING SYSTEMS

INTERACTIVE DEBUGGING WITH DBUGR

Lyle Weiman

Since studies have show that debugging software often takes around half the total development time, it behooves programmers
to fully utilize all the software debugging tools available to them. With the introduction of RTE-IV comes a very much more
powerful program debugging tool, calied DBUGR. This article will discuss the general technique of program debugging, in the
context of this specific program.

There are two most-often used general debugging techniques: post-mortem and interactive. The post-mortem technique
involves adding code at carefully planned locations in the program which traces the execution of that section and perhaps
some of the more indicative data item values at that point. In extreme cases, it may take the form of a “crash dump™: a complete
printout of the program at some instant of time. Due to the large volume of printout, this latter is used most often only when the
program is aborted by the operating system, and requires some support from the operating system, which RTE does not
provide. In any case, a number of runs are usually required to determine the exact cause of the problem, since the information
you require is like a “moving picture” of the program's execution, rather than a single “snapshot” of it.

The interactive debugging method is quite useful in a minicomputer environment partly because it requires no particular
support from the operating system, and because these machines are usually so inexpensive that the overhead required to keep
track of CPU and terminal connection time usage is not justified. You can therefore use a debugging package to “slow down”
execution of the program so you can watch it as it runs. At a minimum, you can always examine or modify instructions, register
or memory contents and control the program execution. The fancier versions allow printout in different formats (ASCH, octal,
decimal, hexadecimal, as a symbolic Assembly language instruction, as a relative address, etc.), and many other extremely
useful features which you'll see in this article. The important thing to note right now is that an interactive debugging package
changes the speed of the program from the time frame of microseconds in which programs run, to that of seconds in which
people think. This gives youtime to think about what you actually told it to do (which isn't always the same as what you wanted it
to do, or you wouldn't be reading this article), and perhaps change its execution as you see where it's going wrong. Let's see
how you can do this with DBUGR.

First, you will need to understand Assembly language. FORTRAN programmers don't need to understand every instruction,
since the FORTRAN compiler only outputs a very limited set of instructions (LDA, ADA, STA, JSB, JMP, CMA or CMA, INA or
SSA or SSA, RSS or CLB or RAL and a few others in the Alter-Skip and Shift-Rotate groups), and it makes almost no use at all of
the B-register or the possible combinations of Alter-Skip and Shift-Rotate groups of instructions, nor any use at all of the
index registers. This subset is much smaller than the full set of which a 21MX-E computer is capable, so the task of learning

these shouldn't be a problem, and the time-saving benefits will more than offset the hour or two it will take.

FORTRAN programmers will usually want to get a mixed listing (compile with the “M” option) before getting started. It is
possible to get along only with the symboi table printout, and after you've developed a little knowledge of how the compiler
outputs code you'll find this another time savings, because mixed listings take so long to print.

Assembly programmers already have the listing they need.

Third, you'll have to load your program with DBUGR. This is a LOADR option. DBUGR adds about 3500 words octal to the size
of your program.

DBUGR may also be called directly from your program, which you may find useful. For example, you may find that a certain

problem occurs only after processing a certain number of transactions. Add a line of code which calls DBUGR after that many
have been processed. This will save you a great deal of time.

CALL DBUGRI[(terminal lu)l

DBUGR will default to using your terminal (this value is given to it by the LOGLU subroutine).

29

OPERATING SYSTEMS

SAMPLE DEBUGGING SEQUENCE

:RU,FTN4, &TDBUG,6, - (see listing for program TDBUG at the end of this article)

:RU,LOADR, ,%TDBUG (load program)
Note: TDBUG calls DBUGR explicitly, so the :RU,LOADR statement didn't need to force it.

:RU, TDBUG (run program. Note: entered from MTM terminal. No LUs or other parameters passed!)

When your program runs DBUGR will print a blank line, and the message
START DBUGR

You'll have to remember all the while you're using DBUGR that it defines its own rules for communication with it, and these are
different from what you're used to with other RTE utility programs. Almost every key on your keyboard has a special meaning to
DBUGR, including the carriage return and linefeed keys. It does not operate one line at a time, as do the EDITR and most
others, but rather one character at a time. As each character is entered, DBUGR “sees” it and acts upon it. Some of the things
you can ask it to do require only one character. As soon as it “sees” the character(s) requiring it to do something, it will do so.
Immediately. Without requiring a carriage retumn/line-feed. DBUGR’s syntax is very concise. You will find it puts very much more
information on one screen than would be possible otherwise, and this is a very helpful feature. You won't need to use the
scrolling features of the terminal. You will be considerably less handicapped using a terminal with little or no off-screen memory
than you are using other line-at-a-time utilities.

This benefit of conciseness is achieved because DBUGR reads your input one character at a time, in binary mode so that the
driver passes each character as received, without interpretation. However, the overhead of doing this is higher than line-at-a-
time input. In a very active system, you may accidentally type characters faster than DBUGR can accept them, and gain system
attention (either an asterisk (*) or the Multi-Terminal Monitor prompt will be typed, depending upon whether the terminal is LU 1
or not) occasionally. You should type Control-D at this point to exit (tell RTE “never mind”). You may also see that DBUGR's
printout may pause momentarily at different places when used in a very busy system. You'll just have to be patient in
these cases.

Unfortunately, and because of this conciseness advantage, DBUGR will not recognize the backspace character. If you make a
mistake before typing the final character of a command, type DELETE (RUBOUT on some terminals). DBUGR will respond by
typing an X and several spaces. The command you didn’t finish and deleted will not be executed. Re-type your command.

DBUGR echoes almost all characters you input, but not all. The Escape key is echoed as a backslash (\).
DBUGR can be used with DVR0O or DVR05, but not DVRO7 (multipoint).

Since the mixed-FORTRAN or Assembly listings you have contain only relative addresses (relative to where the LOADR placed
each module in memory), itis very helpful to define one or more symbols to be these addresses. DBUGR allows you to enter any
combination of defined symbols and constants, separated by the characters + (or blank) for additional or - for subtraction, thus
saving you the trouble of doing all the octal arithmetic yourself.

For example, the symbal P is defined below to be address 30002 (the load point for the module TDBUG). In addition a
breakpoint is set at relative address P+47.

30002¢P: P 47\B

Note how both commands exist on the same line. DBUGR will echo a carriage-return/linefeed to the terminal when Escape B is
entered, in order to start a new line.

A “breakpoint” is the means by which you temporarily stop execution of your program in order to see how much damage has
been done. When you resume execution, your program will execute at normal speed until the “breakpoint” is executed.
Instructions are not interpreted by DBUGR in this mode, so you can only set a breakpoint at an executable instruction. DBUGR
will temporarily save the instruction in that location when you resume execution, and store a JSB (subroutine call instruction) in
that location, calling its own breakpoint-processor instruction. it is for this reason that you must never set a breakpoint:

30

OPERATING SYSTEMS

1. at a constant, or instruction which is also used as a constant

2. at any DEF (define address)

3. at any instruction which will be configured (as in I/O) or otherwise modified
4. at any instruction which will not be executed (or you will “lose control”.

Note: you can only have one breakpoint defined at a time.

Once DBUGR has gained control, or after hitting any breakpoint, you can resume execution by typing Escape P. You must be
sure your program will execute the breakpoint. Since DBUGR is nat interpreting each instruction, if you've placed your
breakpoint at some location that will never be executed, you have no way of recovering control of your program. The most
certain, although not always the most convenient, way to do this is to set the next breakpoint at the next "decision™. In
FORTRAN, decisions are either IF or computed-GOTO statements. In the former, the compiler emits either an SSA (skip if the
sign bit is 0) or SSA,RSS (skip if sign bitis 1). The following instruction or two will be JMP (unconditional GOTOs) which will be
executed depending upon the sign bit of the A-register. DBUGR has an instruction-tracing feature which you can use to
determine which way the program will go, if you'd rather not worry about keeping SSA and SSA,RSS straight. We'll show you
how in a little bit.

In the computed-GOTO case, FORTRAN compiles code such as the following:

JSB .GOTO

DEF end of list
DEF INDEX

DEF stmt #» 1
DEF stmt # 2

DEF last sint number
end of list

You can set a breakpoint at the JSB, and examine the value of the index variable (INDEX in the example above). Count down
that many DEFs and you'll find the DEF to the statement contro! will transfer to. You can move the breakpoint to that statement
simply by looking at the value of the DEF. Suppose the value printed for DEF stmt # 2 was 32067 and the index variable value is
2. Then you can move the breakpoint to the next statement to be executed by typing 32067 escape B.

P+A47) STﬁl P+100,1) 41?01 154006 26162 114577 2 0/ ADA 501
A

Standard breakpoint message, printed whenever breakpoint is hit.
Contents of registers are shown as of execution of previous instruction (i.e., instruction
shown has not been executed yet).

Address of breakpoint
Instruction (Assembly language)
A-register contents

B-register contents

X-register contents

Y-register contents

— E/Q register contents

Suppose we want to see what's in the A-register, but there are ASCH characters in it. To examine any memory location, type its
address (0 for A-register, 1 for B-register) followed by a slash (/). The contents of that location will be printed according to
whatever mode is currently in effect at the time. You can control this mode, which we'll get to a little later, but you can also get a
printout of the last quantity typed (either by you or by DBUGR) in other forms without affecting the print-format mode. in the

example, the contents of the A-register were printed as a symbolic instruction. To find out what this is in ASCIl, type a single
quote ().

LYY \P

31

OPERATING SYSTEMS

Note that DBUGR printed the two characters (AA) followed by a double-quote to delimit the print field, followed by three blanks.

Sometimes a quantity may have only one printable ASCIi character, and this helps you determine whether the character is in the
high or low half-word.

On the same line above, we resume execution.
P+47) STA P+100,1) 40502 154006 27162 114577 2 0/ ADA 502

Since this breakpoint was set inside a DO-loop, it didn’'t need to be moved. This time, however, the contents of the A-register is
different.

‘AB’’ \P
Note the increase in the contents of the A-register.
A} AC , e 3\P

Sometimes it's annoying to have to go through loops several times before you come to the pass you're interested in. DBUGR
allows a number to be typed in front of Escape P. in the example above, the breakpoint message will only be printed after the
breakpoint has been executed three times (note: the instruction which was saved when the breakpoint JSB was stored in your
program will be simulated each time, as it is when you type Escape P).

P+47¢(STA P+100,]1) 40506 154006 27162 114577 2 0/ ADA 506
Note the A-register has increased by three.

\AFII

INSTRUCTION TRACING

You can use instruction-tracing to “single-step” through some codes (very useful if you'd like to see where control passes in
arithmetic IFS). You can't trace through REIO or EXEC calls, however. Move the breakpoint to the return address in this case.

\T Trace one instruction.

P+50¢(LDA P+61) 40506 154006 27162 114577 2 \T

A

Standard breakpoint message is printed for instruction tracing, also. As before, instruction
shown has not been executed.

Execute this instruction.

P+51¢(ADA P+75) 6 154006 27162 114577 2 \4T

l.Note change in A-register, due to execution of previous instruction.

Execute next instruction.

P+52¢(STA P+61) 7 154006 27162 114577 2 \T
Note increase in A-register. Execute next instruction.

P+53¢ CMA, INA) 7 154006 27162 114577 2 \T

Note that contents of registers do not change with Store instructions. Execute next instruc-
tion. Next several instructions will be traced, without comment.

32

P+54(
P+55(
P+56(
P+d1(

You can trace a number of instructions

P+42(
P+43(
P+44(
P+45¢(
P+46(

EXAMINING MEMORY LOCATIONS

P17/

ADA P+60
SSA,RSS
JMP P+41
LDA P+b61

ADA P+76
STA P+100
LDA P+61
ADA P+77
ADA P+101

LDA P+60

)
)

)

)

)
)

)

)
)

OPERATING SYSTEMS

177771 154006 27162 114577 2 \T
154006 27162 114577 2 \T
3 154006 27162 114577 2 \T
3 154006 27162 114577 2 S\T
In the example, 5 instructions re traced:
7 154006 27162 114577 2
30010 154006 27162 114577 2
30010 154006 27162 114577 2
7 154006 27162 1145877 2
40510 154006 27162 114577 2

Examine relative location P+17 (octal). Current printout mode is symbolic, so value is printed as instruction.

You can examine next location by typing Linefeed key (or Control and J keys held down together). Several locations are shown.
Note that no character is echoed, but each display starts on new line.

P+20/
P+21/
P+22/
P+23/
P+24/
P+25/

STA P+61
LDA P+63
STA P+62
LDA P+65
STA P+64
DLD

The next location will be an address. Addresses can be displayed with the underline key (—).

P+26/
P+27/
P+30/
P+31/

IOR 72
DST

IDR 70
JSB 224,1

-P+70

-P+66
224/

I1SZ 1523 =35523 -P+5521

Here, the effective address is desired. First, 224 is examined. Its contents are then printed as an address.

Note what happens when you type linefeed (Control-J) now:

225/

1SZ 1661

You get the location following 224, not P+32. You'll have to type P 32 explicitly in order to resume examination of that section of

memory.

P+33/
P+34/
P+3S/
P+36/

CHANGING PRINT MODE

IOR 76 =P+74

JSB 223,1 =114223
DST

IOR 74 «P+72

You can change the print mode so that data you examine will be printed as constants by typing Escape C.

\C P17/ 62062
P+20/ 72063
P+21/ 62065
P+22/ 72064
P+23/ 62067
P+24/ 72066
P+25/ 104200
P+26/ 30072
P+27/ 104400
P+30/ 30070

33

OPERATING SYSTEMS

CHANGING NUMBER BASES

You can change the radix which DBUGR uses to print numbers. With radix 8 you get octal, with radix 10 numbers are printed in
decimal, and with radix 16 they're printed in hexadecimal. DBUGR will accept numbers from you in only two radixes, however: 8
and 10. Decimal numbers must be suffixed by a period. Remember this when changing radixes.

DBUGR will accept a radix anywhere from 2 to 31, althrough 2, 8, 10 and 16 are the only really useful ones.

P+31/ 114224 16.\R
P 17/ 6432
P+10/ 7433
P+11/ 6435
P+12/ 7434
P+13/ 6437
P+14/ 7436
P+15/ 8880
P+16/ 303A
P+17/ 8900
P+18/ 3038
P+19/ 9894

Note how the address is also printed in hex;
P+1A/ 3038

P+1B/ 303E
P+1C/ 9893

P+1D/ 8900 10.\R
Now, change to decimal—j

P 17/ 25650.

P+16./ 29747.
P+17./ 25653.
P+18./ 29748.
P+19./ 25655.
P+20./ 29750.
P+21./ 34944,
P+22./ 12346.
P+23./ 35072.
P+24./ 12344.
P+25./ 39060.
P+26./ 12344.
P+27./ 12350.
P+28./ 39059.
P+29./ 35072.
P+30./ 12348,
P+31./ 25663.
P+32./ 29747. 3.1\R
Just for laughs, let's try base-31
P 17/ QLD
P+G/ UTI

P+H/ QLG

P+1/ N

P+J/ QLI

P+K/ utL

P+L/ 1587
P+M/ cQas

P+N/ 1SFB
P+0/ cae

P+P/ 19K0
P+Q/ cae6

P+R/ cac

P+S/ 19JU
P+T/ 15FB
P+U/ CGA
P+10/ aLa
P+11/ UTI
P+12/ QLE

34

OPERATING SYSTEMS

DBUGR has several print modes, and their relative permanence can be manipulated. The least permanent is the temporary,
which lasts only for the execution of the current command. For example, the apostrophe prints the previous quantity typed in
ACSII. Another temporary print mode commands are the exctamation mark, which prints the last quantity types in symbolic
form:

P+14A/ 151 'ADA P+1U

P+1Bs UTI 1STA P+11
P+1C/ 11IL 1CMA, INA

The “last quantity typed” refers to the last value, symbol, or expression typed, either by DBUGR or by you.

You already saw how the underline can be used to print a value as an address.
The equality (=) key prints the last quantity in whatever radix is in effect.

P+1D/ 155 'ADA P+1H =]55 8.\R

- Computer
.. Museum

Return to base-8

P+55/ 2021
P+S6/ 26043
P+57/ 26021 L,

OCTAL/DECIMAL CONVERSIONS & CALCULATIONS

You can use DBUGR to do your octal or decimal arithmetic for you, or to convert from octal to decimal or hex, and from decimal
to octal. You can convert from hex to decimal, if you're willing to go through the manual procedure of converting to octal first.

For example, determine the absolute address of location 66 relative to a module loaded at lccation 32477. A subtraction is
shown next just as an example. Next, 55 (decimal) is converted to octal

32477 66=32565 32565-66=32477 &55.=67

Here, a decimal number is added to an octal number. The result is printed in octal.
128. 67=267 (To get the result in decimal, change the radix).
TO RE-EXECUTE A SECTION OF CODE, OR SKIP A SECTION

Use the address you want to start at, followed by Escape G. Be sure your breakpoint wilt be executed.

For example:
P 47\B Set breakpoint

\P Proceed
P+47¢ STA P+100,1) 40501 154006 27162 114577 2 \P
P+47¢(¢ STA P+100,1) 40502 154006 27162 114577 2 \P
P+47¢ STA P+100,I) 40503 154006 27162 114577 2 P 17\G

Go back to relative P 17

P+47¢(STA P+100,1) 40501 154006 27162 114577 2 \P
Note that DO-loop has been restarted.

P+47¢ STA P+100,1) 40502 154006 27162
P+47¢ STA P+100,1) 40503 154006 27162

577 2 \P
577 2

—_
- -
E-N-N

35

OPERATING SYSTEWMS

PATCHING MEMORY

Typing any constant, symbolic instruction, address or ASCII characters after examining any location, followed by linefeed
{Control-J on 264x terminals) or carriage return will store that data item in the examined location (subject to the limitations
imposed by memory-protect and DMS). Note that the Control-J is indicated only by the start of a new line.

P 65/ AA 502 ‘AB’’ AC’’ Examine location 65 (relative)
Print as ASCII.
Store ASCHI "AC” in this location (linefeed or Control-J used after quote is not

echoed. Next location is printed on next line).

Note: you can go back and examine the previous location by using the “up-arrow”

key (%).
P+66/ 0 1 Change relative location 66 from 0 to 1
P+67/ 0 2 Change relative location 67 from O to 2

P+70/ ADB 631

Advance to location 71 without modifying location 70 (no new expression is typed, only linefeed is entered).

P+71/ JSB 1004,1 Advance to next location
P+72/ 0 10. Change relative 72 to decimal 10.
P+72/ 0

DBUGR will also accept any symbolic instruction (memory-reference, ASG, SRG, etc.). In the case of memory-reference
instructions which cross a page boundary, you must provide your own link. The easiest way to do this is to look for another
memory-reference instruction referencing the same location you want, and see which link it uses. Look for references in the
direction farthest from the location itself, in order to find a reference which already has a link {these references are more likely to
be on a different memory page than those closer to the referenced item).

REMOVING THE BREAKPOINT

\B Entering Escape then B removes the current breakpoint.
\P Proceeding without any breakpoint causes the printout:
END DBUGR This message indicates that DBUGR has been exited, and will not be re-entered unless it's

called explicitly, orthe program is re-scheduled after terminating without saving resources.
However, the program continues execution:

07>ST,TDBUG Note that the program is still running:
99 1 0 0 0 0 0 0
EXITING THE HARD WAY

If you wish to abandon the debugging effort, and exit the program in the simplest way possible, simply force a memory-protect
violation:

3\G
ABEND TDBUG ABORTED

Users FMGR copy sends its prompt character.

36

OPERATING SYSTEMS

Only a few of the most useful features of DBUGR have been shown. These and many others are documented in the DBUGR
Manual, part number 92067-90005. You are encouraged to try the above examples first, and then those in the manual.

Note: If you record your patches (display all symbolic instructions you change in octal),
you can use a routine in the Contributed Library called PMOD, which will perma-
nently place your patches in your program. On subsequent executions of the
program, they will be there.

SUBTLE DISTORTIONS INTRODUCED BY THE DE-BUGGING PROCESS

Interactive debugging may also introduce a subtle form of distortion to your program if the bug you're looking for is at all related
to some other event or events.

As a very simple example, suppose the bug you're after is related to the simultaneous access of data by two programs:

PROGRAM A(3,20)
COMMON 1,J,K

IFCI .EQ. 3) 1 = I + 2

PROGRAM B(3,90)
COMMON 1,J.K

IFCI .EQ. 3) I =1 + 3

Suppose, in this example, that programs ‘A’ and ‘B’ share system common, so that |, J and K in each are the same. Suppose
both are resident in different partitions. Suppose that the initial value of | is 3, and that ‘A’ runs but is interrupted after it has
tested |, but before it has begun the I = 1 + 3 calculation, and swapped out by a higher-priority program. The swap will
suspend execution of ‘A’, but since ‘B’ was assumed to be resident in a different partition, it can run (let's assume it does). ‘B’
also tests the value of |, finds the condition true, changes I's value to 6, and continues. When ‘A’ resumes execution again, it will
add 2 to the present value of |, leaving it 8. Note how the final value of | is extremely dependent upon how programs ‘A’ and ‘B’
run with respect to each other. If ‘A’ ran separately, the final result would be 5. If ‘B’ ran separately, the final resuft would be 6.
Can you figure out any other possible values?

Use of an interactive debugging package on either ‘A’ or ‘B would likely slow one of them down so much that the only values cf |
the programmer would ever see would be 5 or 6. The programmer would then be climbing the walls because he knows he’s got
an intermittent problem, and he can’t find it when he looks for it.

Besides shared resources (which the knowledgeable programmer will control via resource numbers), there may be other cases
where your program may execute slightly differently depending upon events external to it, and possibly to the computer.
Examples of events which are internal to the machine and can influence program execution are:

1. Contention for I/O devices. Even if your program has priority 1, it may have to wait for a device to complete a previous
request.

2. Swapping of other programs (even lower/priority programs, because the CPU is slowed down during any DCPC transfer).

37

OPERATING SYSTEMS

3. Contention for system available memory (SAM). SAM is used for re-entrant subroutines, so that the mere fact that a
program calls a routine which happens to be in the re-entrant library can sometimes suspend it for unavailable memory.

4. The temporary unavailability of tracks on LU 2 or 3 may prevent a lower-priority program from being swapped out in order
to make room for a higher-priority one. The lower-priority program will continue to run until the condition clears itself or the

program terminates. Note that a termination call which specifies that resources be saved will tie up that partition
indefinitely, in this case.

In addition to the above, loading the program with DBUGR may change the points at which your program crosses page
boundaries, which will add indirect references to some instructions, and remove them from others. Since indirects take an extra
memory cycle, your program will run slightly slower in some places, and slightly faster in others, merely because DBUGR has
been added. However, these effects are minute compared to the others above, and in all likelihood would never be noticeable.

Any of the items above may introduce delays intc your program which will very likely be different and occur at different points in
the program’s execution with each run.

How does one proceed in the event the problem can't be found through the normal debugging techniques? One proceeds
mainly by instinct, limiting DBUGR commands as much as possible, in order to minimize delays. [f at all possible, determine at
some gross level that something always happens in a certain way that can be tested. For example, when the condition occurs, a
location may always be set to some value it normally is not supposed to have, or some value it may have, but infrequently. Add
code to the modules which utilize this location to test for this value, and call DBUGR when they've found it.

Another technique, called transaction logging, may be helpful when those shown above fail. It involves modifying your
programs so that, as each new "transaction” arrives for processing, some trace of it is left somewhere. SAM is a convenient
place to do this, but every effort must be made to minimize the amount of SAM which is tied up in this manner, because this may
introduce an additional delay if SAM is a scarce resource. Transaction-traces written into SAM should be removed very quickly
by a high-priority program which locks itself into a partition, reads these buffers and writes them to the disc. Data blocking
should be used to minimize the disc accesses. However, beware of making this program too large, or the partition it uses will be
large, and hence it will effect the competition among large programs for partitions, and introduce a different form of distortion.

There should be a program which can analyze these transactions later, after the problem has already evidenced itself, and
therefore its own effect on the system can be ignored. That program may be quite fancy, but need only print out all transactions
on a printer. If you suspect that there may be hundreds or thousands of transactions going through the system during the
sample period {as would be the case in problems which take days or weeks to show themselves), it would be far better instead
to format the data into an ASCI! file with transaction number and time of day in it, so that the EDITR can be used to select only
relevent protions for printout. Circular files are useful because data which is too old is automatically written over, but you are
limited to fixed-size records.

In later articles, we will discuss the techniques sometimes employed to find intermittent bugs. Most of them are extremely
dependent upon the characteristics of the programs themselves and how the bug manifests itself, and depend to a great
degree upon a thorough understanding of the software itself and everything it depends on, including, in some cases, the
hardware. They will therefore often be different each time, but it is hoped that you'll be able to adapt one of them to the job at
hand as required.

Happy Hunting!

38

OPERATING SYSTEWMS

PAGE 0001 FTN, 12:20 PM THU., 5 JAN., 1978

0001 FTN4,L,M

0002 PROGRAM TDBUG
0003 INTEGER J1(10)
0004 CALL DBUGR
0005 5 CONTINUE

0006 I=10

0007 J=3

0008 JJ=2HAB

0009 X=2.3

0010 XX=X**2

0011 Do 10 1=1,10
0012 J1(I) =2HAA+I-1
0013 10 CONTINUE

0014 GOTO 5

0015 END

FTN4 COMPILER: HP92060-16092 REV. 1805

** NO WARNINGS ** NO ERRQPS ** PROGRAM = 00066 COMMON = 00000

PAGE 0002 TDBUG 12:20 PM THU., 5 JAN., 1978

0002 PROGRAM TDBUG

0003 INTEGER J1(10)

0004 CALL DBUGR

Jl BSS 00012B

00012 000000 NCP
00013 000001X JSB CLRIO
00014 000015R DEF *-2+4000038B

0005 5 CONTINUE
00015 000002Xx JSB DBUGR
00016 000017R DEF *-4400005B

0006 I=10

0007 J=3
00017 O0O00060R @5 LDA 00060B
00020 000061R STA I

0008 JJ=2HAB
00021 000063R LDA 00063B
00022 000062R STA J

0009 X=2.3
00023 O000065R LDA 00065B
00024 000064R STA JJ

0nlo XX=X**2
00025 000003% JSB .DLD
00026 O000070R DEF 00070B
00027 000004X JSB .DST
00030 000066R DFF X

0011 ro 10 1=1,10
00031 000005X JSB .RTOI
00032 000066R DFF X
N0033 000074R DEF 00074B
00034 000006X JSR ER®PQ
00035 000004Xx JSB .DST
00036 000072R DEF XX
00037 0ONDOT5R LDA 00075B
N0040 O000061R STA T

39

. OPERATING SYSTEMS

0012 J1(I) =2HAA+TI-1
00041 O000061FR LDhA I
00042 000076R ADA 000768
00043 O00N100R STA A.001
0013 10 CONTINUE
00044 O000061R LDA I
00045 000077R ADA 00077B
00046 000101R ADA 00101B
00047 100100R STA A.001,I
0014 GOTO 5
00050 000061FP @10 LDA I
00051 O000075R ADA 00075B
00052 000061R STA I
00053 003004 CM2,INA
00054 000060R ADA 0Q(060B
0no5s5 002021 SSA, RSS
00056 000041R JMP 00041R
0015 END
00057 000017R Jvp @5
00060 0N0012 OCT 000012
I BSS 000N28
PAGE 0003 TDRBUG 12:20 PM THU., 5 JAN,_,
00063 000003 OCT 000903
JJ BSS 0000N1R
00065 040502 OCT 040502
X BRSS 00002B
00070 044631 OCT 044631
00071 115004 OCT 115004
XX BRSS 00002B
00n74 000002 OCT 000002
00075 000001 OCT 000001
00076 177777R NDEF 777778
00077 040501 OCT 040501
A.001 BSS 000N1B
nolelr 177777 OCT 177777
PAGEF 0004 TN3UG 12:20 PM THU., 5 JAv,,
SYMBOL TABLE
NAME ADDRESS USAGE
10 00050R STATEMFNT MUMB
As 00017R STATEMENT NUMB
CLRIO 00001X% STATEMENT FUNCTION
DBUGR 00002X STATEMENT FUNCTION
FRRO 00006X STATEMENT FUNCTION
I 00061R VARIABLE
J 00062R VARIARLF
J1 00000R ARRAY (*)
JJ 00064R VARIARLE
X 00066R VARIARLE
XX NN072R VARIABLE
PAGE 0005 FTN, 12:20 PM THO., S JAM.,
0016 FNDS
\ END

40

1978

1978

TYPE

REAL
PEAL
REAL
INTEGER
IMNTEGER
INTEGER
INTEGER
REATL
PEAL

1978

LOCRTION

EXTERNAL
EXTERPNAL
FEXTERNAL
LOCAL
LOCATL
LOCAL
LOCAL
LOCAL
LOCAL

COMPUTATIONS

CAUTION ON MATH OPERATIONS ON HOLLERITH CONSTANTS

Jim Bridges

Many FORTRAN IV programmers discover short cuts which are not specified in the ANSI standards for that language. In some
cases, the short cuts will violate the standard and yet will work because of the different implementation on various computers.
This article covers one short cut which was discovered not to work. In this case, the programmer was apparently not familiar
with the standard, found a situation which did not work and reported it as a bug. Very few people who program in FORTRAN [V
have actually read the ANSI standards (they are considerably less exciting than a novel). In most cases, this does them no harm
and there probably are some excelient programmers who never heard of ANSI standards. Regardless, this article may show
how to identify some problems with your code.

Look at the following sample program, which uses DATA statements to fill in DOUBLE PRECISION variables with HOLLERITH
information.

FTN4 ,M
PROGRAM EQDMT(3,89) ,EXPERIMENT WITH HOLLERITH IN DO NUMBER
DIMENSION NAME1(3),NAME2(3),LU(S)
DOUBLE PRECISION FN1,FN2
EQUIVALENCE (FN1,NAME1),(FN2,NAME2)
DATA FN1/6H!S4L07/,FN2/6H!S4L67/
CALL RMPAR (LU
IF (LU.EQ.0) LU = 1
WRITE (LU,1000> CC(NAME1CIC,I=1,3),(NAME2CI),I=1,3),U=1,2),FN1,FN2
10000 FORMAT (2(3X,3A2/),/2(3X,306/),/2(3X,G20.15/))
IF (FN1.EQ.FN2) WRITE (LU,1010) (NAME1CI),I=1,3),(NAME2(]),I=1,3)
IF (FN1.LT.FN2) WRITE (LU,1020> (NAME1CI),I=1,3),(NAME2(]),I=1,3)
IF (FN1.GT.FN2) WRITE (LU,1030) (NAME1CI),I=1,3),(NAME2C]),I=1,3)

1010 FORMAT (3A2,"™ IS EQ TO "3A2)
1020 FORMAT (3A2," IS LT TO "“3A2)
1030 FORMAT (3A2,* IS GT TO “3A2)

END
END$

While it is perfectly legitimate to use HOLLERITH data to initialize DOUBLE PRECISION variables, according to ANS! standard
the variable becomes undefined. This is reasonable because the variable is not a string variable, even though it may sometimes
be used as a string. (In fact, one of the criticisms of FORTRAN [V is the lack of string handling features.) Therefore the
operations of .EQ.,.LT., and .GT. are arithmetic operations — not string operations. As such, double precision arithmetic is used
to make the comparisons requested.

As noted in Appendix A of the HP FORTRAN IV manual, a double precision number is significant to 11 or 12 decimal digits,
depending upon the magnitude of the leading digit in the fraction. The memory layout of double precision format is:

St14 0 WORD 1 (S=SIGN OF FRACTION)
15 0 WORD 2
15 87 14F WORD 3 (F=SIGN OF EXPONENT

BITS 1 - 7 IS EXPONENT

A mixed listing of the above program will show that the numbers implied by the above HOLLERITH information differ by
approximately 10 exp —34. Thus, within the accuracy of the double precision arithmetic, the two values are equal. Therefore the
statement with format 1010 will cause a printout. Note that, because the sign of the exponent is in the least significant bit, that a
change in this bit will cause a large variation in value.

Because of the much simpler format of the integer, problems of this sort do not occur when filling integer variables with
HOLLERITH information.

41

BT BUCKET

Samantha wishes to correct an error in the last issue, which described the method of using the symbols . ZRNT and . ZPRV
when writing subroutines which might go into the memory resident library. The statement was made that a subroutine which was
placed in the memory resident library would have a copy also placed in the disc resident library. The subroutine will also be
placed in the disc resident library only for RTE IV (not RTE Il or RTE lI).

Ina RTE I/1ll system, a disc resident program which calls a memory resident subroutine will cause a memory protect violation,

which is examined by the system for legality. If the violation is JSB (call) to an address within the bounds of the memory
resident library, it is permitted. However, this process adds overhead to the system: depending upon the particular CPU, it
can cost up to 1 millisecond to “break” the memory protect fence.

Because of this overhead, it is best to consider carefully what programs are made memory resident. All the type 6 subroutines
referenced by the memory resident programs will get placed in the memory resident library and these may also be subroutines
commonly used by disc resident programs.

Samantha invites you to write in requesting information on any technical question regarding HP 1000 system software. You will
always receive a personal replay, whether or not your question is answered in this column. Address your questions to:

SOFTWARE SAMANTHA

c/o HP 1000 Communicator EDITOR
Hewlett-Packard Data Systems
11000 Wolfe Road

Cupertino, California 95014

42

BIT BUCKET

DETECTING PROBLEMS AT BOOT-UP TIME

Jim Bridges

A knowledge of what happens at boot-up time gives the user a powerful tool to help trouble-shoot systems when a hardware
failure is suspected. The kind of failure this applies to is one which may occur at boot-up itself. Bootstraps are, by necessity,

very simple programs and they do minimal checks. Hence it is possible to have a bootstrap seem to work, that is, it seems to
bring in the system and the system “runs” but is doesn't run very well. It may give unusual memory protects or dynamic
mapping errors, for example, which make no sense. In such a case, perhaps the system was not completely brought into

memory or perhaps a parity error occurred during the boot process.

A description of the boot process is contained in the May 1976 issue of the Communicator in the article “Know Your RTE, Part
2". New information is added here as well as (it is hoped) a simpler presentation.

There are two parts to the bootstrap program:

1. A bootstrap which is “system independent” is placed in the upper 64 words (but never higher than 32K) of memory. The
bootstrap may be loaded from ROM, toggled in from the front panel or loaded from some other medium. For simplicity, we
will call it the “ROM Boot”.

The ROM Boot loads, using a specified head number, the information beginning at sector zero, cylinder zero. It does not
know whether there is a system on the disc or not. It begins loading into memory starting at location 2011. It issues a
request to read a word count greater than a track (not possible in a single request) and then jumps to the contents of
memory address 2055 as soon as the disc has processed the command. That is, DMA transfer is not checked. It is
assumed that only the first few sectors are of interest and they will have been loaded into memory whether or not DMA
completes.

2. The information that the ROM boot brings off cylinder zero can be called the "RTE boot”. Although it bears no special
relationship to the system itself, it contains a table which it is used to identify the portion of the disc to be loaded into
memory and where it will go in memory. For RTE Il and RTE Il the map looks like this:

000002 002000 OTTTSS (for Base Page)
002000 MMMMMM OTTTSS (for System)

where

MMMMMM = Last word address plus one of system
TTT = Track where base page or system starts on disc
SS = Starting sector on TTT

For a typical system which begins on cylinder 0, the starting sector is 2 for base page and 22 (octal) for the system. The
track is zero in this case. Note that the RTE bootstrap itself is on sectors 0 and 1 and that all sectors have 64 (decimal)
words.

A listing of the RTE bootstrap for the 7900 disc is given at the end of this article. With this listing, it is relatively simple to
understand the “slow-boot” process described in the previously referenced Communicator article. This listing is not available
else in customer documentation. However, the listing of the ROM boot is given in the Loader ROM's Installation Manual,
12992-90001.

The slow-boot process can be described as:

1. Load the ROM boot into memory.

2. Patch the ROM boot to cause a halt before it executes the RTE boot which it brings in from sectors 0 and 1. Location is
patch is 077775 (or lower if less than 32K). Then execute the ROM boot from its starting location (usually 77700). When the
halt occurs, the RTE boot is in memory (if the hardware is working).

3. Patchthe RTE boot so that it halts before jumping into the system code. Location to patchis 2016 (true for 7900/7905/7920
discs). Execute the RTE boot from 2175 (see listing below).

43

BIT BUCKET

Notice that the first action by the RTE boot is a halt 77 at location 2200. This is patched to a NOP (zero) by the SWTCH

program. It may be patched back to 102077 if you wish, in which case it would not be necessary to patch 077775 to a halt for a
slow-boot.

The next action taken by the RTE boot is to move itself to high memory starting at 77750. Then it jumps to the start of the
relocated boot (i.e., 77750). This is done because the system itself would otherwise overlay the RTE boot. Because of memory
wrap-around, if the computer has less than 32K of memory the RTE boot will still be moved near the top of memory.

Because the RTE boot is moved, the halt inserted at 2016 will actually execute in high memory. When it occurs, you may make
patches to the system, if you wish. To check if the system was loaded correctly into memory, examine a few locations in the
communications area of the base page (1647 to 1777). Usually, it is necessary to verify only one or two locations. Easy ones to
check are 1651 (number of EQT entries), 1653 (number of logical units), 1674 (1/O select code of the time base generator).

This minimal check will detect a great many problems, but if it does not show anything wrong, then you may wish to consider the
effect of a parity error at boot time.

There is a memory parity error INT/IGNORE HALT switch on the computer (see installation and service manual for location and
instructions) which determines what happens when a parity error occurs. If the switch is in the HALT position, a memory parity
error causes the computer to halt at location 5. In the INT/IGNORE position, the effect of a parity error is to create an interrupt
which (like all interrupts) is processed by the RTE system. If the switch is in the INT/IGNORE position, you will not be able to
“see" the occurrence of parity errors until the system is actually running: hence parity errors at boot-time are “lost”. If such
errors go undetected at boot-time, they may cause very strange symptoms, depending upon what parnt of memory is bad.

The processing of a parity error in RTE |l and RTE IIl is very minimal. When one occurs, the system halts with 102005 in the T
register and the memory violation address in the B register. In RTE lll the violation address may be in one of four maps, but it is
most likely to be in the user map. If the switch is in the HALT position, then the operator must toggle in an instruction (e.g., LIA 5)
to pick up the violation address. This is annoying or difficult enough for most people that they choose the INT/IGNORE position
of the switch. On the other hand, the processing by the system is so minimal that many people feel its better to choose the HALT
position. Whatever your choice, when memory parity problems seem frequent, it is best to stick with the HALT position for a
time.

The listing for the 7900 RTE boot is given below.

Memory Instr Mnemonics Comments
02011 067652 START LDB MADR GET MAP ADDR
02012 077641 STB T3 SAVE
02013 017506 JSB BOGN LOAD FROM DISC
02014 017506 JSB BGN
02015 017506 JSB BGN
02016 124003 JMP 3,1 GO INITIALIZE SYSTEM IN MEMORY

#*
02017 002011 BGN 0OCT 2011 (USED AS ADDR BY CODE AT L1)
02020 167641 LDB T3,I GET FWA IN MEM
02021 037641 1sZz T3 BUMP PTR
02022 163641 LDA T3,I GET LWA IN MEM
02023 037641 1sZ2 T3 BUMP TO DISC ADDR
02024 003304 CMA,CCE,INA 2'S COMPL OF LWA
02025 040001 ADA 1 + FWA GIVES NEG WORD COUNT
02026 005225 RBL,ERB
02027 106702 CcLC 2 PREPARE FOR DMA CONTROL WORD #2
02030 106602 aTB 2 OUTPUT FWA OF MEMORY FOR LOAD
02031 073640 STA T2 SAVE 2'S COMPLEMENT OF WORD COUNT
02032 163641 LDA T3,1 GET DISC ADDR
02033 013636 AND M177 MASK FOR SECTOR
02034 070001 STA 1 SAVE IN B REGISTER
02035 123641 XO0R T3,1 BLANK QUT SECTOR TO GET TRACK
02036 037641 1s2 T3 BUMP TO NEXT POSITION IN MAP
02037 001727 ALF ,ALF PUT TRACK IN BOTTOM BYTE

44

Memory Instr

02040 001200
02041 043643
02042 073633
02043 005100
02044 060001
02045 001727
02046 001300
02047 003004
02050 043642
02051 073636
02052 003004
02053 073637
02054 002001
02055 002175
02056 063640
02057 002021
02060 127506

02061 043636
02062 073640
02063 002020
02064 002400
02065-043637
02066 102702
02067 102602
02070 063633
02071 102612
02072 103712
02073 063644
02074 106713
02075 102613
02076 103713
02077 047646
02100-006021
02101 047634
02102 006020
02103 047645
02104 047647
02105 102312
02106 027574

02107 106612
02110 103712
02111 063650
02112 102313
02113 027601

02114 102613
02115 103712
02116 106713
02117 103706
02120 103713
02121 102313
02122 027610

02123 102106
02124 103712
02125 063651

R1

Mnemonics

RAL

ADA STRK#
STA CT1
BRS

LDA 1

ALF ,ALF
RAR

DMA, INA
ADA WDTRK
STA T6
CMA, INA
STA T7
RSS

0CT 21758
LDA T2
SSA,RSS
JMP BGN, I

ADA T6
STA T2
SSA

caL

ADA T7
STC 2

0TA 2

LDA CT1
0TA 12B
STC 12B,C
LDA SEEKC
CLC 13B
0TA 13B
STC 13B,C
ADB M24
SSB,RSS
ADB BIT8
SSB

ADB D24
ADB OFSET
SFS 12B
JMP #-1

OTB 12B
STC 12B,C
LDA READC
SFS 13B
JMP +-1

OTA 13B
STC 12B,C
CLC 13B
sTC 6,C
STC 13B,C
SFS 13B
JMP a-1
STF 6

STC 12B,C
LDA STWD

BIT BUCKET

Comments

AND ADD STARTING TRACK FOR SYSTEM
SAVE STARTING CYL FOR SEEK COMMANDS
DIV BY 2: OFFSET #BLKS FROM STRT 1ST TR

MUL BY 128 TO COMPUTE WDS TO SKIP

2'S COMPLEMENT
ADD NUMB WDS TRACK

2'S COMPLEMENT

ALWAYS SKIP (NEXT LOC IS AN ADDRESS)

THIS IS ADDRESS TO GO WHEN STARTING BOOT
GET WD CNT REMAINING ON TRACK

DONE IF NO MORE WDS TO LOAD THIS PART

ADD # WDS TO LOAD THIS TIME

SAVE REMAINDER FOR NEXT TIME THRU LOOP
IS THIS LAST LOAD?

YES

A = 2'S COMPL OF WD COUNT THIS LOAD
PREPARE DMA CHANNEL

OUTPUT WORD COUNT

GET CYL ADDRESS FOR SEEK

SEND TO DATA CHANNEL
GET SEEK COMMAND
CLEAR COMMAND CHANNEL

OUTPUT SEEK COMMAND TO COMMAND CHANNEL
THESE NEXT INSTRUCTIONS

BUILD THE HEAD SECTOR

ADDRESS

FOR THE SEEK

COMMAND

= HEAD #2 IF ON LOWER SUBCHNL

FIRST ADDR WORD OF SEEK ACCEPTED?

OUTPUT HEAD SECTOR ADDRESS

GET READ COMMAND
SEEK COMPLETE?

OUTPUT READ COMMAND

TO DATA CHANNEL

CLEAR COMMAND CHANNEL
ACTIVATE DMA

INTTIATE ACTUAL READ OPERATION
READ COMPLETE?

ABORT ANY DMA IN PROGRESS

GET STATUS CHECK COMMAND WORD (ZERO)
45

BIT BUCKET

Memory Instr

02126
02127
02130
02131
02132

02133
02134
0213S
02136
02137

02140
02141
02142
02143

02144
02145
02146
02147
02150
02151
02152
02153
02154
02155
02156
02157
02160
02161
02162
02163

02164
02165
02166
02167
02170
02171

02172
02173
02174
0217S
02176
02177
02200
02201

02202
02203
02204
02205
02206

02207

106713
102613
103713
102312
027620

102512
000010
102031
000010
027500

006400
037633
002400
027537

177600
000400
000177
000000
000000
077500
077500
014000
000000
030000
000030
177750
001000
020000
000000
077653

000002
002000
000002
002000
056032
000022

000000
000000
000000
000000
102106
107700
102077
162017
172151
036017
036151
036144
026201

026152

cT1
BIT_
M177
T6

T7

T2

T3
WDTRK
STRK#
SEEKC
D24
M2 4
OFSET
READC
STWD
MADR

GO

L1

Mnemonics

CLC
OTA
STC
SFS
JMP

LIA
SLA
HLT
SLA
JMP

CLB
1sz
CAL
JMP

DEC
acT
ocT
NOP
NOP
ocT
ocT
DEC
NOP
ocT
DEC
DEC
ocT
ocT
ocT
ocT

ocT
acT
ocT
ocT
ocT
acT

NOP
NOP
NOP
NOP
STF
CLC
HLT
LDA
STA
1sZ
1sZ
1sZ
JMP

JMP

13B
13B
13B,C
12B

-1

12B
31B

START

CT1

R1

-128
400
177

77500
77500
6144

30000
24
-24
1000
2000

77653

2000

2000
56032
22

6

0,C
77B
BGN, I
T2,1
BGN
T2
CT1
L1

T3 ,I

END START

Comments

INITIATE STATUS CHECK COMMAND
STATUS READY?

GET STATUS
ANY ERRORS?
YES! HALT. PRESS RUN TO RESTART

BUMP CYL ADDR FOR NEXT SEEK

AND GO LOAD NEXT TRACK
COUNTER TO MOVE 128 WORDS

START OF RELOCATED BOOT

FWA OF RELOCATED BOOT

WORDS TRACK

ACTUAL STARTING TR OF SYS (MAY BE#0)
SEEK COMMAND WORD

SECTORS/SURFACE

OF 128 WD SECTRS/SURFACE

HEAD #2 OR O IF ON SUBCHNL 1

READ COMMAND

STATUS COMMAND WORD

FWA OF MEMORY/DISC MAP TO LOAD SYSTEM

FWA ON BASE PAGE

LWA + 1 ON BASE PAGE

DISC TR SECTOR WHERE BP LOCATED

FWA OF MAIN MEMORY

LWA + 1 OF MAIN MEMORY

DISC TR SECTOR WHERE SYSTEM LOCATED

NOT USED

NOT USED

NOT USED

THIS 1S WHERE WE BEGIN EXECUTION OF THE
ABORT DMA

INTERRUPTS OFF

(PATCHED BY SWITCH TO NOP)
GET CONTENTS OF BOOT

MOVE TO MEM STARTING AT 77500
BUMP SOURCE PTR

BUMP DEST PTR

BUMP CNTR (SET AT 128 WORDS)
CONTINUE LOOP

GO TO START OF RELOCATED BOOT (77500)

46

BT BUCKET

PATCH A SYSTEM BEFORE YOU INSTALL IT

Jim Bridges

System generation often takes several hours. Therefore, it is desirable not to have to repeat the process if only minor errors have
occurred. For example, you may have specified the wrong select code for a driver. In such cases, it is preferable to patch the
system rather than regenerate.

If you have used the on-line generator for RTE Il or RTE Ill, then the system exists in a type 1 file. By patching the file, you
effectively patch the system before installation rather than at boot-up or after the system is running. This procedure can be a
great deal easier, depending upon the nature of the error.

The type 1 file contains an image of the system, if you skip the first record (which is information for SWTCH). However, there are
minor complications due to the fact that the base page begins at location 2 and that it does not end at the end of arecord in the
file. The system main memory begins at the next record after the base page. The sample program below includes a subroutine
(CALC) which takes this discrepancy into account. The program uses CALC to report the contents of the referenced memory
location as it appears in the type 1 file and the record/word in the file. In order to actually patch the location, the program would
have to be expanded or another program used to make the patch from the information printed. This sample is used only to
illustrate the simplicity of patching.

FTN4,L
PROGRAM LDOOK (3,50),L00K AT DISC FILE

c
C RU,LOOK,TERMINAL,MEM LOC,NUM OF CONSECUTIVE LOCATIONS
c
INTEGER LU(5),BUFR(128),DCB(144),NAME(3),5SC,CR
DATA NAME,SC,CR/2H!S,2HYS,2HTM,0,254/
CALL RMPAR (LU)
CALL OPEN (DCB, IERR,NAME,D,SC,CR)
IF CIERR.LT.0) GO TO 700
DO 100 I=LUC2),LUC2)+LUC3)-1
CALL CALC (I, IREC, IWORD)
CALL READF (DCB,IERR,BUFR,128,LEN,IREC)
IF CIERR.LT.0) GO TO 700
100 WRITE (LU,1000) IREC,IWORD,BUFR(IWORD),BUFR(IWORD)
1000 FORMAT ("™ REC/WORD= ™,14,"/",13," VALUE = ",86,3X,A2)
CALL CLOSE (DCB, IERR)
CALL EXEC (&)
700 WRITE (LU,1010) IERR
1010 FORMAT (' FMP ERROR :"16)
END

SUBROUTINE CALC C(IMEM,IREC, IWORD)
LOC = IMEM +126

IF C(IMEM.GT.1777B) LOC = LOC + 2
IREC = (LOC)>/128 + 2

IWORD = MOD (LOC,128) + 1

END

47

~ BULLETINS

DOCUMENTATION

The following tables list currently available customer manuals for Data Systems Division products. This list supersedes the list in
the last issue of the COMMUNICATOR 1000.

The most recent changes to the tables are indicated for easy reference. Prices are subject to change without notice.

Copies of manuals can be obtained from your local Sales and Service office. The address and telephone number of the office
nearest to you are listed in the back of all customers manuals.

Customers inthe U.S. may also order directly by mail. Simply list the name and part numnber of the manual(s) you need on the
Corporate Parts Center form supplied at the back of the COMMUNICATOR 1000.

Change notices are free of charge. If you require a change notice only, send your request to:
Software/Publications Distribution

11000 Wolfe Road
Cupertino, CA. 95014

A few words about documentation terms:

*N A new manual refers only to the first printing of a manual. When first printed, a manual is assigned a part number.

"R A revised manual is a printing of an existing manual which incorporates new and/or changed information in its
contents. For example, a manual is revised when a change notice is incorporated into the manual: the manual gets a

new print date and the change notice disappears. Note that a revision to a manual obsoletes the previous version of
the manual.

Change A change notice is a supplement to an existing manual which contains new and/or changed information. It is issued

Notice when information must get to customers, yet it is inappropriate to issue a revised manual. A change notice has no part
number; it is automatically included when you order the manual with which it is associated.

1000 SYSTEM MANUALS

PART PRINT CHANGE
NUMBER MANUAL TITLE PRICE DATE NOTICE
02170-90006 HP 1000 Computer System Installation and Service $ 250 7177
02172-90005 Getting Started with Your HP 1000 Disc Based Computer System 4.00 6/77
(for A computers)
02172-90010 Getting Started with Your HP 1000 Disc Based Computer System 2.50 3/78'R
(for B computers)
02173-90007 Getting Started with Your HP 1000 System: Models 20 and 21 7.00 8/77
91780-93001 RJE/1000 Programming Manual 9.50 11/76 6/77

48

 BULLETINS

RTE SYSTEMS MANUALS

PART PRINT CHANGE
NUMBER MANUAL TITLE PRICE DATE NOTICE
02313-93002 RTE 2313B Analog-Digital Interface Subsystem Operating and Service Manual $30.00 8/76 12/77
02320-93002 RTE System Driver DVR76 for HP 2320A Low Speed Data Acquisition Subsystem 1.00 8/74
Programming and Operating Manual!
02321-93001 RTE System Driver DVR74 for HP 2321A Low Speed Data Acquisition Subsystem 2.00 8/74
Programming and Operating Manual
09600-93010 RTE System DVR11 for HP 2892A Card Reader Programming and Operating Manual 1.00 8/74
09600-93015 912008 TV Interface Kit: Programming and Operating Manuat 450 7175 1/76
09601-93005 RTE System Subroutine for General Purpose Registers 3.00 10/74 10/77
09601-93007 RTE Device Subroutine for HP 5327A/B-H48 Counter 2.50 12/74
09601-93009 RTE Device Subroutine for HP 5326A-H18 Counter 2.50 12/74
09601-93015 RTE for 40-bit Qutput Register #125568 1.00 10/74
09601-93017 RTE System Subroutine for HP 12555B D-A Converter 1.00 10/74 10/77
09603-93001 9603A/9604A Control System and Scientific Measurement Operating and Service Manual 7.50 5/76
09610-93003 ISA FORTRAN Extension Package Reference Manual 4.50 12177
09611-90009 9611A Operating 406 Industrial Measurement and Control System .25 4/75
09611-90010 HP 6940A/B Multiprogrammer Verification Manual 4.50 8/75
12604-93002 RTE DVR40 for 12604B Data Source Interface 1.00 8/74
12665-93001 RTE System Driver DVR65 for HP 12771A Computer Serial Interface Kit 1.00 8/74 1/78
12732-90001 RTE Driver DVR33 Programming Manual 2.00 2177 1/78
13197-90001 RTE Driver DVR36 Programming and Operating Manual 3.00 9/76
24998-90001 DOS/RTE Relocatable Library Reference Manual 10.00 10/77
25117-93003 RTE System Driver DVR24 for HP 7970 Series Digital Magnetic Tape Unit 1.00 8/74
29003-93001 RTE System Driver DVR66 for HP 12772A Coupler Modem Interface Kit 1.00 8/74
Programming and Operating Manual
29003-33003 RTE System Driver DVR66 for HP 12770A Coupler Serial Interface Kit 1.00 8/74
Programming and Operating Manual
29009-93001 RTE System Driver62 for HP 2313B Subsystem 2.50 8/74
29028-95001 RTE HP 2610A/2614A Line Printer Driver 1.50 8/73
29029-95001 Real-Time Executive System Driver DVR0O for Multiple Device System Control Small 1.50 11/75
Programs Manual
29100-93001 RTE System Driver DVR40 (29100-60041) for HP 12604B Data Source Interface 1.00 8/76
Programming and Operating Manual
29101-93001 RTE Core-Based Software System Users Manual 10.00 1176
29102-93001 RTE BASIC Software System Programming and Operating Manual 10.00 3/74 8/75
29103-93001 RTE System Cross Loader Programming and Operating Manual 2.50 12/76 5/77
59310-90063 DVR37 Manual 3.50 6/77
59310-30064 HP-1B Interface Bus I/O Kit Users Guide 8.50 477 6/77
91060-93005 RTE Driver for X-Y Display Storage Subsystem (HP Model 1331C-016) Programming 1.00 8/74
and Operating Manual
91062-93003 Real-Time Executive Driver for DVM/Scanner Subsystem 9.00 8/74
91700-93001 Distributed System CCE Operating Manual 9.00 5877 977
91705-93001 Distributed System SCE/5 Operating Manual 15.00 12/76 9/77
91200-90005 RTE Driver DVA13 for TV Interface (HP 91200B) 1.50 5/77
91740-90002 DS/1000 Programmers Reference Manual 1200 | 9/77"N
91740-90015 DS/1000 A Guide for New Users 450 | 12/77*N
92001-90010 RTE Line Printer Driver (DVA12) Reference Manual 1.00 | 11/77*R
92001-30015 RTE DVRO5 for 264X Terminals 2.00 1/78'R
92001-93001 RTE-il Software System Programming and Operating Manual 10.00 777 10/77
92060-90004 RTE-IIl Software System Programming and Operating Manual 12.00 | 3/78R
92060-90005 RTE Assembler Reference Manual 7.00 | 11/77"R
92060-90009 RTE-III General Information Manual 4.00 2/76
92060-90010 RTE Batch/Spool Monitor and Operating System Pocket Guide 4.50 477
92060-90012 RTE: A Guide for New Users 6.50 7/76
92060-90013 Batch-Spool Monitor Reference Manual 9.50 10/77
92060-90014 RTE Interactive Editor Reference Manual 6.00 5/77
92060-90017 RTE Utility Programs 3.00 3/77 3/78
92060-90020 RTE On-Line Generator 15.00 2/78'R
82062-30003 2631A/2635A Printer Utility Subroutine Reference Manual 1.50 1/78*N
92400-93001 HP 92400A Utility Library Subroutines for Sensor Based Data Acquitition Systems 10.50 2/78"R
Programming and Operating Manual
92409-93001 Utility Library Subroutines for HP 7210A X-Y Plotter Programming and Reference Manual 250 | 12/77*N

49

BULLETINS

RTE SYSTEMS MANUALS (Continued)

PART

PRINT CHANGE
NUMBER MANUAL TITLE PRICE DATE NOTICE
92064-90002 RTE-M Programmer’s Reference Manual $14.00 1/78'R 2/78
92064-90003 RTE-M System Generation Reference Manual 750 | 1/78*R 2/78
92064-90004 RTE-M Editor Reference Manual 6.00 1/77
92064-90007 RTE-M Pocket Guide 4.50 6/77
92200-93001 RTE System Driver DVR12 for HP 2607A Line Printer Programming and Operating Manual 1.00 8/74
92200-93005 Real-Time Executive Operating System Drivers and Device Subroutine Manual 5.00 1/78'R
92202-93001 RTE System Driver DVR23 for HP 7970 Series Digital Mag Tape Units Programming and 1.00 8/74
Operating Manual
92400-93001 92400A Utility Library Subroutine for Sensor-Based Diagnostics 7.50 11/76
93005-93005 Thermal Line Printer Subsystem for Driver DVR0O (RTE) 2.50 12/74
HARDWARE MANUALS
PART PRINT CHANGE
NUMBER MANUAL TITLE PRICE DATE NOTICE
02108-90002 HP 21MX M-Series Computer Reference Manual $ 5.80 6/76 7/76
02108-90006 HP 21MX M-Series Computer Installation and Service Manual 10.00 7/76
02108-90004 HP 21MX M-Series Computer Operators Manual 5.00 7/76
02108-90017 21MX M-Series Computer Engineering and Reference Documentation 125.00 5/77 1/78
02108-90027 21MX-K-Series Computer Engineering and Reference Documentation 100.00 5/77
02109-90001 HP 21MX E-Series Computer Operating and Reference Manual 8.00
02109-90002 HP 21MX E-Series Computer Installation and Service Manual 15.00 8/76 377
02109-90006 HP 21MX M- and E-Series Computer /O Interfacing Guide 7.00 {10/77R 12/77
02109-90014 21MX E-Series Computer HP 21098 and HP 2113B Operating and Reference Manual 8.00 8/77
02109-90015 21MX E-Series Computer HP 21098 and HP 2113B Instaliation and Service Manual 15.00 8/77 9/77
12732-90005 HP 12732A 12733A Flexible Disc Subsystem Operating and Service Manual 5.50 8/77
12979-90006 HP 12979A /O Extender installation and Service Manual 15.00 6/77 9/77
12979-90007 HP 12979A /0O Extender Operating and Reference Manual 5.00 12/75 9/77
12979-90014 HP 12979B Input Output Extender Operating and Reference Manual 2.00 8/77
12979-90016 HP 129798 Input Output Extender Installation and Service Manual 12.00 8/77 8/77
12990-90003 HP 12990A Memory Extender Installation and Service Manual 5.50 4/76 8/76
5950-3765 21MX E-Series Computer Technical Reference Manual 3.50 6/77
LANGUAGE MANUALS
PART PRINT CHANGE
NUMBER MANUAL TITLE PRICE DATE NOTICE
02100-90140 Decimal String Arithmetic Routines $ 6.50 2177
02108-90032 HP 21MX M-Series Computer RTE Microprogramming Reference Manual 15.00 10/76 9/77
02108-90034 HP 21MX M-Series Computer RTE Microprogramming Pocket Guide 2.75 1/77
02108-90004 21MX E-Series Computer RTE Microprogramming Reference Manual 20.00 3/77
02109-90008 21MX E-Series Computer RTE Microprogramming Pocket Guide 2.50 11/76
02116-9014 HP Assembler Manual 6.50 8/75
02116-9015 HP FORTRAN Manual 6.00 177
02116-8016 Symbolic Editor 4.50 2174
02116-9072 ALGOL Reference Manual 10.00 11/76
12907-90010 Implementing the HP 2100 Fast FORTRAN Processor 1.00 7/76
24307-90014 DOS-11Il Assembler Reference Manual 8.00 7/74
92060-90005 RTE Assembler Reference Manual 7.00 12/76
92060-30016 Multi-User Real-Time BASIC Reference Manual 12.00 977
92060-90023 RTE FORTRAN {V Reference Manual 10.00 7177
92063-90001 IMAGE 1000 Data Base Management System Reference Manual 9.00 [10/77"R 12/77
92063-90004 IMAGE 1000 Data Base Management System Pocket Guide 4.00 6/77
92065-90001 RTE-M Real-Time BASIC Language Reference Manual 8.50 2/77 7177
02108-90008 HP 21MX M-Series Computer BCS and DOS Microprogramming Reference Manual 7.00 |10/77*R

50

BULLETINS

SOFTWARE UPDATES

Following are cross-reference lists of the available 92001B, 92060B, and 92064A (options 20 & 40) software modules, the
media on which the software modules are distributed, and the date code or revision of each module up to, and including level
1805.

NOTE:

For each module, interdependencies with other modules may exist (i.e., any updated
module may require other updated modules to function properly).

SOFTWARE MODULE NUMBERS: 92001B LEVEL 1805 (RTE II)

The following modules are also available on a 7900 RTE Master Software Disc (#92001-13001), or a 7905 RTE Master Software
Disc (#92001-13101).

REVISIUN MINT
40 UL F DESLNIPTION CODE CARTHTDGE PaPEN TAPF
LS4 24K SIU |LINE FRINTEKR DRIVER 1538 92¢r?1=13305 A2LET =Y e d
ACVRLS RTE 72018 DNIVER 1736 YPv62=13304 I LTS R -
Y0DVES3 | FLEXIKLE DISE DwIVEk 1805 Y2n62=13304 1e7d2=1600]
sSamTH 24K S10 MeG,TaPt DRIVER 1550 Q2n1=-133M5 1297 =160nnd
*DVR3I™ RT1FE F1XED HEAL DISC DRETVER C Q2¢h2=13305 20/ 8/ =)
ALAI {0 CAL. PLOTTER DRIVER B G2vE2=13302 2¢ErBmhuv]
“CALIR | CAlL, PLOTTER LIBRARY C Y2r62=13302 2ediveh vy
A1FTN FURTRAN MATN CUNTROL 3 G206A=13308 2087 8=6, 241
A2F AN FURTRAN PASS | 3 QoREA=13308 VBT H=hyin2
PRUBEY FNRTRAN PASS 2 3 Y256p=13308 2nARTN=6LEES
$aFTH FORTRAL PASS 3 £ Q226 =133QR 2ue78=kh0 v a
ABFTH FORTHAN PASS 4 3 92¢FP=1330K 2Un7 Sehy S
ALGIL RTE/LUS ALGUL PART 1643 G2062=13305 281 9=k)
LALGLY RTE/DOS ALGOL PART ¢ C GPARN=133R435 PaY by Py
XtE LN RTE/20S FURMATTER o Y20ENn=1330n3 24153mhney
LOECAR HOSH 8T ARTITH Pk & C2c8=13303 2437 Rh=kivn]
LHITEY RTE/ZD0S LIBRAKY PART 1740 S2vbp=13302 Z498nm k(0]
Y In? RTE/DGS [IBxawY PART 2 174m 92K6N=13302 2450h=1rv]
AFFa,nN FURTRAN IV FORMATTER 1726 920602=13323 2694H=10Ur2
AUVRR A RTE 7979 77 MAG, TAPE DRIVEK U G2uK2=133R5 25117 =60485y
AUVR 31 RT& 7QuAa DISC DRIVER 1712 yonE2=13305 2901 3=frni
ROVR]2 RTF 27R74 DNIVER" A G2u62=13303 29U 2H =k alAL 2
LOVKG RTE TTY/PUNUH/PROTO READFW 174p Y2¢B2-13302 2Y9n2Qanviiy]
AUVkL1 RTE 28424 CARD READER DRIVFK 171m YouEP=13313 2903lebiingy
1SdLF 24Kk ST0 LINE PRINTER A 92ur1=13325 29 1 Ulehr)7
1S45YD 24K SID SYSTEM DUMP A 92e71-13305 291l eha IR
154PHR 24K SIN PRNTO READEKR A Y2eP1=-13305 2U AP =BG
1SaPUN 24K SI1U TaPE PUNCH A 92pM1=13305 291Mne b Ve
184167 24Kk SI1U 2767 LINE PRINTER A YR 1=13305 201 A0=bhving2
184r 12 24K S10 7970 MAG, TAPE A 2eR1-13305 2HlUM=hned
2 54MT3 24K SIN MAG, TAPE A 92¢P1=133m5 291e0=b114Y
8ATER 24K SI0 TERMINAL PRINTER A 92001=133n5 291 2A=b1 A
*1Uv37 RTE HWP=1B WITHOUT SkQ 1726 92¥62~13304 5931 A=160e2
X2l vz RTE HPe=Ib wITH 8RG 1726 920862-13304 39310 =1606d
YHPIB HPeIH DEVICE SUBROUTINE 171m 92062=-1330R4 59310=-16014
XSRQ,P SROA,P TRAP UTILITY 1710 92062-13304 3931A=16UES
%iovyie COMP, 721PA PLOTTER DRIVER A 02062~13302 72A@a8=hpiry
%2nvie MIN, 7210A PLOTTER DRIVER A 92082=-13302 72049=6A00y 1
X0val1d 9120W0A DRIVER 1648 92062+13303 J12ud=160@1
ATviLIB 91200A VIDEO MONITOR LIBRARY 1648 92062~13303 QiRun=16@v2
XLDR2 RTE 11 LOADER 1732 92081-13301 9200116002
XTVVER 9120@A TV INTERFACE VERIFIER 1648 92062~13303 912ar=16104
AMTM MULT, TERMINAL MONITOR 8 92069=13301 92201~16V023
XSvYLIB RTE SYSTEM LIBRARY 1740 92060-13301 92001=16005
XAUTOR AUTO RESTART PROGRAM 1631 92p60-13310 920¢1=16014
X0vAL?2 26@7/19/13/14/717/18 DRIVER 1805 92062+-13303 92201=16020
%4pves RTE 2644/4%5 ORIVER 1808 92862+-13302 92001=~16227

51

- BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 92001B LEVEL 1805 (RTE 1I)
. REVIST(v MINT .
MODULE DESCRIPTION COnE CARTRIDGE PAPEK TaPE
{26NGBR RTE=I] 79um OFFaLINE GEN, 1631 920@1-13303 Q20vi=16013
XAUTOR AUTO RESTART PROGRAM 1631 921P1=-13302 92¢01=16114
12GNFH RTE=II FIXED HMEAD DI1SC GEN, 1631 92¢01~13306 920n1=16018
xXDval2 26@7/19/13/14/17/18 DRIVER 1805 92¥62~13303 922 1=16020
126NDD RTE=1] 7975 NFFel INE GEM, 1631 92vR1-13303 92nn1e1bn26
X4DvVih5 RTE 2644/4% DRIVER 1805 921¥62-13302 9Zevi=10027
xenves RTE 26404 DRIVER 185 92062-13302 92vol=16028
XS$CMD2 RTE=I1 COMMAND PROGKAM 1710 92001=-13301 Q2r01=16n29
XWhZT2 RTE=II WHZAT PROGRAM 1726 924P1-13302 Q2nU1 =163
XRT261 RTE=I1T1 ON=LINE GENERATUW PT, 1 1805 92P01=-13304 FLuri=16031
XKT262 RTE=II ON=LINE GENERATOR PT, 1 1805 92071~13304 92rv1=-16031
hvaas RTE DRIVER 264X MUDEM 1740 92062=13302 92veé1=1603%
SAUTOR AUTOD KESTART SOURCE 1631 92001-13302 92ur1~=1b14
SAN2FD RTE=II 79¢Q® GFATHER ANSW FILE 185 928m1=-13307 92481=-16233
LANDFS RTE=I1 7Q044% GFATHER ANSw FILF 1845 92801=13307 92¢ 1 =18034
XBMEG BATCH MDNIYOR PROGRAM PART 1 1631 92002=13371 92rn2=12ni1
XRMPG2 BATCH MONITUOR PROGKAM PART 2 1631 920P2=13301 G20¢2=121y1
IBMEGY BATCH MONITOR PROGLRAM PART 3 1641 S2n?2=-13301 Y2¢¥d2=1200n1
A2S5F01 RTE=T1 SPOOL MONITOR PARY 1631 92ve2-13323 2V Wzl en?
X2SPC? R1E=I1 SPOOL MONITOk PART 2 1631 92Pn2=~13303 2rrz=1201n2
iBmL 1B RATCH LIRRAKY 1631 92002-13302 2vn2=-10KK6
ZELITR RTE EDITOWR o Q2¢e2-13302 92¢uvwe=toR1v
ZASMb RTE ASSEMBLER 1634 Yor6EP=13304 Q2nevei2nva
4CLLIB RTE CUMPILER LIbBRARY 1726 92¢r60=-13315 Qvby=120¢5
XxKEF CROSS KEFERENCFE A 92060-13304 9erev=1612R
A0VR32 RTE 7995a DISC DRIVER a 92P62-13305 Q2vibn=160n31
XSWTC W RTE=]]l SWITCH PrROGRAM 1829 92ee1~13304 zvbé=1613b
XSAVE SAVE PROGRAM {1704 Y2060=13309 PRIV RSN N RY]
AHESTH RESTORE PROGRAM 1704 92062=-133R9 9evbhm100an
AVERPY NISC VERIFY PRUGKAM 17v4a G2¢6@=13009 Y2nbi=16041
XCUPY NISC COPY PKRNGRAM 1704 92060-13309 QZrér=1H0a2
XNEKLE D1SC BACK UP LIBRARY 1704 92v6r=-13309 QerbA=16144%3
IDSKUP AFF LINE DISC BACK WP 1845 92061-13309 Q2nbneibnsa
ARLNAM READ NAMR PWNGRAM 1631 92¢71=13322 J2¢vi6A=16114D
IKEYS SUFT KEY LYILITY 1707 $2¢21-13002 Y2nbn=16052
AKYDMP SOFT KEY LUMP UTILITY 1707 9207 1-13002 2vb=16023
%FTNG RTE FORTRAN IV MAIN 1726 92069~13316 Q2RKA= b py2
AFFETNA RTE FURTRAN IV SEG F 1726 9286P=13316 QLUbaPelbrY Y
LAFTNA RTE FORTRAN Ty SEG © 1726 92¢62-13316 Y2ibv=16uya
%iFING HTE FORTRAN IV SEG 1 1726 92060-133106 92V6A=16nYDd
X2FTN4 RTYF FORTWRAN 1V SEG 2 1726 92060=13316 Q2ubN=16PY6
43FTh 4 RTE FORTRAN IV SEL 3 1726 92060=13316 92P6N=16047
X4FTN& RTeE FORTRAN IV SEG 4 1726 9206013316 S2r6r=16PyH
sUPDAT UPNDATE TRANSFER FILE 1805 s2en1-13302 9206M=18n46
4PKDIS PACK DISC TRANSFER FILE 1631 gzAnr1=13302 9206R=180a7
XLP31 SUBRQUTINES FOR 2631/2635 1805 92062-15003
XMSAFD FLEXIBLE DISC BACKUP UTILITY 1740 92nEM=13309 Q2064=16R86
ANVR23 RTE 797¢ YT, MAG, TAPE DRIVEW A 92062=-13304 92202=162u1
X2Dva7 RTE 9290@A DRIVER WITHOUT NMS 1643 92¢62-1330%2 9290n=16012
X3Dvay RTE 9290mA DRIVER WITHW OMS 1641 Y2462-133n2 Q20UR=16MAY

52

SOFTWARE MODULE NUMBERS: 92060B LEVEL 1805 (RTE Il

The following modules are also available on a 7900 RTE Software Disc (#92060-13001), or a 7905 RTE Master Software Disc

(#92060-13101), or a 7920 RTE Master Software Disc (#92060-13201).

REVISION MINT 3
mOubLE DESCHIPTION CODE CARTRIDGE PaPFK TAPE
1841 n7 24k SI0 LINE PRINTER DRIVER 1538 G2uN1=-13305 AebA7=16004
XOVR1Y RTE 72614 DRIVEWK 1738 920462=13304 EELDRER NP
ALVRII FLEXIBLE DISC DRIVER 1805 92¢62=-13304 12732=16Mu1
1SamTy 24K SI0 MAG, TAFE URIVEKR 1550 y2001-13305 12Y7¢=1b00 4
AUVYRIN RTE FIXED HWEAD NISC DKRIVER C y2m62-13305 20747 «fity)
ACAL LW Cal, PLOTTER DNIVER 8 §2062-13302 uBuB=6nu]
%CALIB CAL, PLOTIEK LIBRARY c Y2¢62=13302 208 v=-butnl
*1FTN FORTRANM MAIN CONTROL E G2r6R=-13308 P YL LT
4LPFTN FORTRAM PASS | E Q2¢6n=13306 2viB7Heblinn2
L3FTN FORTRAN PASS 2 E §72060-13308 2887 8=buvid
%4k TH FURTRAN PASS 3 3 Yer6Rnel3ING VBT ShRy 4
LEF TN FORTRAN PASS 4 E 92n60-13308 2va7d=huens
AALGUL RTE/DGOS ALGUL PART 1 1643 92060=133¢25 2641 2%=bune]
KALGL Y RTE/DOS ALGUL PART 2 C YP2v6Y=13305 24129=-6n002
XFF N RTE/DDS FURMATTER c 9068 =13303 2415 8=6vAny
LDECAR DUSH ST AKITH PK A 92060-13373 203, K=H A
XKLIEY RTE/DOS LIBKARY P&RT 3 1740 Gre6n=133022 PAYWH=IBRY]
XRLIB? RIE/008 LIBRARY PARY 2 174np G2E6B=-13302 240981601
%FF A, N FORTRAN IV FARMATTER 1726 Y2062-13303 24G4B-1o0n?
%NVKZ 4 RTE 7970 77 MAG, TAPE DRTVEK D 92n62-13305 25117 =60.494
ADPVRI L RTE 790UvA DISC DRIVER 1710 92062-13305 2uitd=flrur]
LOVk12 RTE 27674 DWIVER A 921n62-13303 29 gB=byitng
ADVKDO RTE TYY/PUNCH/PHOTOD REAUER 1740 920u62=-13322 29¢29=60nul
ANDVRLY RTE 2892A CARD REANER MKIVER 1710 92y62=-133023 2YU3n-60nn]
154LP 24K SIO0 LINE PRINTER A 92en1~-1330b 291ave=bunnly
1848SYD 24K SIU SYSTEM QUMP A 92v21=-13305 2Y1nN=bunN]lE
1S4PHR 24K SI0 PHOTOD READER A g20¢1~-13305 291Av=-8¢ 1Y
1S4FUN 24K SI0 TAPE PUNCH A 92ve1=-13305 201V =hn2i
154,67 24K 510 2767 LINE PRINTER A 9229 1=13305 2Y10u=buryd
15amT2 24K S10 797¢ MAG,TAFE A 9200113305 29160=-6n1ed
1SAMT 3 24K S10 MAG, TAPE A 92071 =13305 291 20=byPdy
JSATER 24K SI10 TERMINAL PRINTER A 92001=13305 291 l'=RNASY
A1Lvy? RTE HP=IR W1ITHOUT SRQ 1726 92@62-133024 59311=16p0n2
420v37 RTE KHP=1B WITH SRG 1726 92062~13304 5931 N=10A3
XHFPIB HP=IH DEVICE SUBROUTIMNE 1710 92062=-13304 39313=160A04
XSKlU,P SRG,P TRAP UTILITY 1710 92062-13344 5931n=160nid
%xjpvie COMP, 7210A PLOTTER DRIVER A 92062-13302 728l
X2hv1iw MIN, 721@A PLOTTER ORIVER A 92062«133m2 72010800
XDVaAl1l} 912e¢2A DRIVER 1648 92062-13303 Q12vi=160021
XTviLIB Q1208A VIDEQ MONITOR LIBRARY 1648 92062=13303 912iN=16A02
XTVVER 91200A TV INTERFACE VERIFIER 1648 920682-13303 9120n¢=16084
XMTM MULT, TERMINAL MONITOR 8 920¢1=-13391 92001=1b0M¥3
X20P43 POWER FAILURE DRIVER 1633 92001=1330} 922p1=16A04
XSyLI8 RTE SYSTEM LIBRARY 1740 92001~1330} Q2rUI=~16005
XCR2SY CORE RESIDENT OPERATING 8YS, 1740 p2e01=133021 92001=16012

53

BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 920608 LEVEL 1805 (RTE lll)
R MIN
MOUULE DESCRIPTION EéégéON CAH§R§DGE PAPER TAPE
rppves RTE 2646A DRIVER 1805 92@62-13302 9261 =16028
XDVApS RTE DRIVER 264x MODEM 1805 92062-13302 92v1=160235%
3AUTOR AUTO RESTART PROGKAM SOURCE 1631 92060=13310 920u1=18114
%BMPG 1 BATCH MONITOR PROGRAM PART | 1631 92002+13301 926v2=12001
XBMPG?2 BATCH MONITUR PROGRAM PART 2 1631 92002+13301 921K2=120n0)
YEMPGY BATCH MONITUR PROGRAM PART 3 1631 92002-133021 Q20v2=1¢Rv
%bM{ TR RATCH LIBKARY 1631 920m2#13302 92PN2=16A1b
XELITR RTE EDITNR c g2vn2+-13302 92vn2=16010
AJSPOY RTE=JI1 SPOGL MUNITCR PaART | 16314 9206P=13313 q2uén=170vy
X3SPU2 RTE=III SPOUL MOUNITDR PART 2 1631 9206013313 9226p~120¢1
%Cr3SY MEMORY RESIDENT SYSTEM 1740 92060-13301 92R6AN=12103
XAShp RTE ASSEMBLER 1639 92062=13304 9226¢=1¢¥ 4
“CLIB RTF COMPILEK LIBRARY 1726 9206013315 920b¢=120uh
XILFAY POWER FAILUWE DRIVER 1633 92060-13301 9206u=16up1
ALDRY RTE=111 LOADER 1732 92060=-13301 92P6N=16¢04
LWHTT 3 WRTE=I]] WHZAT PROGRAM 1732 Q226013310 Q2¢6A=16106
%X REF CkNSS REFERENCE A 9206Q=13304 QLB6N=16028
l3LNgs 7924 RTE=II1 GENERATOR 16314 9206013311 32060=16429
XDVRA? RTE 79054 DISC DRIVER A 92062-13305 92A6U=16031
LAGNES 79905 KRTE=I11l GENERATOK 1631 92060-13311 S2¢e6n=16232
%SFVMP SPVMP A 92060=-13301 9246P=16p35
*ECMDI RTE=II1 COMMAND PHOGRAM 1710 920602-13301 9206 =16036
XRTIG] RTF=111 ON=LINE GENERATOR PT,1 1805 92060=-13312 92uvév=1n237
XRTIG2 RTE=II1 ON=LINE GENERATOR PT,2 1865 92860=13312 92062=16u137
XSWTC R RTE=111 SKITCH PRUOGRAM 1805 92060=13312 Q2rbn=16138
%S9AVE SAVE PROGKAM 1704 92p62=-133099 92pbi=16139
LRESTR RESTOWE PROGRAM (RSTDR) 1704 9206p=13309 92260=16R4p
YVERFY DISC VERIFY PRNGRAM 1704 §206@=13309 erbneitnal
ACCPY NISC COPY PROGRAM 1704 92¢60-13309 Q2nB=16042
40bKLB DISK RACK UP LIBRARY 1704 9206@=13309 92MEn=1601a3
ipsKUP | DFF LINE DISK RACK UP 1805 92060=-13309 92nbvn~100ad
LRLNAM READ NAMR PRNOGRAM 1631 92060=13310 92ARR=16145
IKEYS SUFT KEY UTILITY 1707 921n62«13310 92VENe I HRH2
AKYLMP SOFT KEY LUMP LTILITY 1707 G2v6a=13310 92pbA=16MH3
XFTMa RTF FORTRAN TV MAIN 1726 G2p6R=-13310 9206n=16092
*FFTNG FORTRAN TV SEGMENT F 1726 9206Q=13316 92ubl=160193
“OFTNG FORTRAN IV SEGLMENT @ 1726 Y2060=-13316 Qeuhii=16KG4
Y1FTNG FORTRAN TV SEGMENT 1 1726 92¢60U=13316 92¢bP=16780
%12FTNG FURTRAN IV SEGMENT 2 1726 92460=13316 92060=16196
LIFTNG FURTRAN IV SFGMENT 3 1726 92069=13316 92vcu=1061197
LeFTN4 FURTWAN IV SEGMENT a 1726 G20860=133106 QRAbU=1AEYIS
AUPDAT UPDATE TRANSFER FILE 1805 92P60=-13310 Cubbre=i8nas
LPRT 1S PACK DISK TWANSFER FTLF 1631 92u6A~13310 S2ubA=1K0na7/
SANIE D RTIF=111 792w GFATHER ANSW FTLE 18258 92¢60-13314 Jevbtr=1HRYK
aANAF N RTE=ITII vh/20 GFATHER ANS FILF 18025 G206p=-13314 Q2ueA=1o1bh1]
AMSAFD FLEXIBLE DISC BACKUP LTILLTY 1740 Y2060A-1330Y 9eritbd=1mu86
INVRZ 3 RTE 767v 9T, MAGL, TaPr |LRIVER) 92¢62-133P4 Q272¢2=1H0t
'CIRPY RTF 929vab DRIVER wiTernY (im§ 1726 wovneE2-13322 JZYNA= AL
W3vaz RYE QpySvivh DRIVER wITr uMS 1643 Y2¢62<133n2 W29LPm16A0d

SOFTWARE MODULE NUMBERS: 92062A LEVEL 1805 (RTE IlI)

BULLETINS

REV N MIN
MODULE DESCRIPTION Ecégéo cm#wioce PAPER TAPE
¥UVkib RTE 7261A DRIVER 1738 92862=-13304 29bul=~16u21
XDVRJ33 FLEXIBLE DISC DRIVER 1680% 92¢62=13304 12752=-16001
ADVRIA RTE FIXED HWEAD DISC LRIVER C 92862=13305 20747 =000
XCAL L@ CAL, PLOTTER DRIVER B 92262«13302 20808=60041
%CALIB Cal, PLOTYER LIBRARY C G2n62=-13302 2UALVN=BLAR]
%DVk24 RTE 7974 7T MAG, TAPE ORIVER D 92062=13305 25117=6v 499
A0VR31 RTE 784vA DISC DRIVER 1712 92u62-133M5 29013-6vited
Xoyw1? RTE 2767A DKIVER A 92B62=-13343 2YN2b=6yAng
ADVRUM RTE TTY/PUNCH/PHUOTO READER 1742 Vor62=-13302 29029=h AN
Z0VR1L RTE 28924 CARD READER ORIVER 1712 920u62=-133@3 29vidvebiRny
41Dva7 HTE MP=18 wITHOUT SkO 1726 GP2n62=13304 5931v=101v2
12bva7 RTE HP=IB WITH SRG 1726 G2¢62=13304 59414=16003
*HPIbB HP=I8 DEVICE SUBROUTINE 171@ 92062-13304 59310=16204
LSHUL,P SKQ,P TRAP UTILITY 1712 92162-13304 59314=16405%
%10vie COMP, 721¢A PLNTTER DRIVER A 920462=13302 T2AAB=ERrAR]
X20v1d MIN, COMP, 7914A FLOTER DRIVE A 92862~13302 72vnQ=prian]
%*DVALY 912vwA DRIVER 1648 Y2¢62=~13303 912vn=16an1
ATVLIB 912¢aA VIDEDO MONITOK LIBRARY 1648 92062=13303 Jlent=1001K2
%¥TVVER | 912nWA Tv INTERFALE VERIFIER 1648 92062133083 912n=16744
%DYAL? 26N7/13/13/714/17/18 DRIVER 1885 92¥62-13303 Gevivl=16A20
X40Virh RTE 2644/4% DRIVER 18019 Y2¥62-13302 9ehe1=16027
AACVYD RYF 26424 DRIVER 1808 92v62=-13302 92U l=16428
ADvaLd RTE DRIVER 264X MOGOEM 1740 92P62=13302 92Ma1=16C35
LDVR3P RTE 79454 DISC ORIVER A 92v62=1330Ad Q2ubp=iondy
LOVRZ3 RTE 797v 91, MAG, TAPE DRIVER A 92462-13394 J22ve=160re1
Lelbvaz RTE GRYWA UGRIVER WITHOUT DFS 1643 92¢62=-13302 QRYNP = BV 2
%230vaz RTE 929vA UORIVER wITH LMS 1643 yne62+«-13302 Q29N =1600d

SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1805 (RTE-M)

The following modules are unique in that they are available on Flexible disc as well as Paper Tape and Mini-Cartridge.

STRUCTURE

The RTE-M operating system is divided into three groups. Refer to the RTE-M Programmer’s Reference Manual (part no.

92064-90002) for a description of the operating systems.

Within this list the modules that correspond with each operating system are described as MI, Mll, or MIII.

CARTRIDGE TAPES

There are three cartridge tapes that contain the three operating systems. The part numbers of these cartridge tapes and the
corresponding operating systems follow:

92064-13301 RTE-MI
92064-13302 RTE-MII
92064-13303 RTE-MIII

Modules that correspond with two or all three operating systems and are contained on more than one cartridge tape contain
(M), (M), or (MIl) in their description.

Modules that do not directly relate to the operating systems are contained on the other cartridge tapes.

FLEXIBLE DISCS

There are two flexible discs referred to as GEN DISC and APP DISC. The GEN DISC (92064-13401) contains all the software
that can be loaded at generation. The APP DISC (92064-13402) contains all the application software that can be loaded on-line.
As with the cartridge tapes, some of the modules can be found on both flexible discs.

55

BULLETINS

The Generation disc contains the following:

Off-line generator

All operating system software
11O drivers

Certain HP user programs

The Applications disc contains the following:

HP applications programs — Assembler

FORTRAN compiler

Editor

Cross reference program
Certain relocatable system software
Certain user programs

Modules that appear on both flexible discs contain (GEN DISC) or (APP DISC) in their description.

SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1805 (RTE-M)

MODULF DESCRIPTIUN RE;égéON cAziziosE PAPER TAPE FLEXIBLE DISC
XDVR15S RTE 7261A CARD READER DRIVER 1738 G2p62-13304 29601=16Mm21 V20641342
XDVR IS FLEXIRLE DISC DRIVER 1805 92n62-13304 12732-16081 92064=134p1
1CALLY RTE PLOTTER NRIVEK B 92062=-13302 2uB8B=HNNANY g2064=13401
ACALIR CAL, PLOTTER LIBRARY c 92462=13302 2081P=62001 92064=13491]
XFF N RTE/LUS FURTRAN FUORMATTER C 92¢60=13303 24153=6vnn1 92u6dm13402
XFF N RTE/DNS FORTRAN FURMATTER C 92060-13303 24153=60001 92084=13401
*DECAR DUSM STRING ARITH PK A $2@62=-13303 24396=6vRatl

kRLIbI RTE/DOS LIBRARY 1740 92060-13302 24998=-160301 92064=13401
ARLIb! RTE/0DDS LIBKARY 1740 9206p=13302 2499R=160¢1 92064=13402
ARLTE? RTE/DUS LIBRARY 1740 92060=-13302 24996=106001 92064=13402
ARLIB2 RTE/DOS LIBRARY 1740 92¢6M-13302 24998=16001 92064=13401
LEF 8N FORTRAN IV FORMATTER 1624 62060=-13303 24998=1600112 92064=13402
AFFd N FORTRAN IV FORMATTER 1624 Y2060=13303 24598=16002 92064=13401
XDVR12 RTE 2767A DRIVER A 92062-13303 291 28=60h02 92064=13401
ADVK@w RTE TTY/PUNCH/PHOTD READER 1740 S2062-13302 29n29=60npn1 92064=13401
ADVR1Y RTE 28924 CARD READER DRIVER 1718 92062-13303 2993P=6Uhu1 92064=13401
LBLARY HP=IB WITHOUT SYSTEM REGUEST 1710 Y2062=13304 5931v=160a02 92064=13401
42Lv37 HP=1B WITH SYSTEM REQUEST 1710 92062-13304 59311=16623 92¢64=13401
AHPIB HP=IB RTE UTILITY 1710 92062-13304 59310=16064 92064~13401
%SRQ,P SRQ.P TRAP UTILITY 1710 92u62~13304 393811=16A05 92064=13401
Xiuvie COMP, 7216A PLOTTER DRIVER A 92¢62~13302 720uBmfnnng 92064=13401
X2Lvin MIN, COMP, 721MA PLOTTER DRIVE A 92¢62=-13302 72039=60001 92064«13491
ADVALS 91200 TV INTERFACE DRIVER 1648 §2062=13303 912avn=16001 92064~123401
XTvL1B VIDEG MONITOR LIBRARY 1648 $2062=-13323 91220=16062 92064=13401
4TVVER TV INFT VERIF 1648 92062~13303 1200=10004 920¥64=-13401
ADVAL12 26U47/172/13/14/17/718 DHRIVEK 1805 92062=-13303 92u41=16020 920684=13491
14DVRY RTE 2644/45 DRIVER 1805 g2062=13302 92¥8u1=186027 92064~-13441
2ALVES RTE 264PA DRIVER 1805 §2062-13302 92¢01=16n28 920864=134¢1
%*DVADS RTE DRIVER 264X MODEM 1749 §2262-13302 92031~16035 92064=13401
AKEYS SUFT KEY UTILITY 1797 92p64=13304 02060=-16052 92064=13402
%XKYDMP SOFT KEY DUMP UTILITY 1797 92064=-13304 92uER=16053 92064=1341p2
%FTNG FORTKAN IV MAIN 1726 920604=16092 V2u64=-13402
*FFTNG RTE FORTRAN lv SEG ID SUB 1726 92060=16093 92064-13402
AOFTNA FORTRAN IV SEGMENT 8 1726 92RbP=16094 92v64=13492
X1FTN4 FURTRAN IV SEGMENT 1 1726 92062=16A95 92064=13402
X2FTNG FORTRAN IV SEGMENT 2 1726 Q2060=16096 92064=13402
%3FTNG FORTRAN IV SEGMENT 3 1726 9226016097 92064=13402
X4FTN4 FORTRAN IV SEGMENT 4 1726 92060-16098 92064=13492
LFMPC CARTRIDGE FMP/FMPCR (LIB) 1805 92064=13306 92664=123405 92064=13401
XFMPF FLEX DISC FMGR LIB (GEN DISC) 1808 92p64=12006 920264=13411
XFMPF FLEX DISC FMGR LIB (APP DISC) 1726 92064=120206 92P64=13402
XCLIBM RTE COMPILER LIBRARY 1726 52064=12007 92064-134902
AMSY1 MI OPERATING SYSTEM 1605 92086413301 92064=160¢1 92064=13401
IMSY2 MI1 OPERATING SYSTEM 1805 9206413302 92064-16002 Y2064=13401
AM8Y) MIII OPERATING SYSTEM 1805 92064+123303 9206416003 92064=13401
XMBUY M1 BUFFERING 1654 9286413301 9206416208 92¢64=13401

56

(Continued)

SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1805 (RTE-M)

BULLETINS

N MINIT .

MODULE NESCRIPTIUN REZ;S;U CARTRIDGE PAPER TAPE FLEXIBLE DISC
XMMP MI SCHEDULING NPTION 1805 921n64~13301 92064~160RP6 Y2164-1342)
IMTI TIMER OPTION (MII) 1600 92¥64+-13302 92p64=106408 G2n648=]3spy
IMTY TIMER OPTION (MIII) 1650 92064=13303 92064=16308 92u6a=134p)
XMT] TIMER OPTION (M]) 1650 92464-13301) 92064=16008 92464«1341)
IMTS TIME SCHEDULING OPTION (MIII) 1650 92p64-13303 92¢64=106009 92464w]3an)
XMTS TIME SCHEDULING OPTION (MIT) 165¢ 92064=13302 92064160209 9erfa=t3am
XMTS TIME SCHEDULING OPTION (MI) 1650 92064~-13301 9206416009 92464=13401
XMOP NPERATOR COMMAND CPTION (MIIT) 1650 92V64=13303 92064=16010 92PHd4=134M)
AMOP OPERATQOR CQOMMAND OPTION (MIIY 1650 92064=13302 92064=-16010 ¥2ub4=1340)
XMOP OPERATOR COMMAMD OPTION (MI) 1650 92064=13301 92064=16010 92464~1340
XMCL CLASS TI/0 NPTION (MID) 1808 Q2064=13302 92064=-16011 92¢64~1349)
XMAP MI/I1 ABSULUTE PROGRAM LOADER 1726 92064=-13305 92064=169012 92064=1340}
IMDMLB DUMMY LIBRARY (MII) 1650 92064-13302 92064=16413 92¥864=134p1
IMOMLB DUMMY LIBRARY (MI) 16506 92p64~-13301 92064=1613 92364=13401
XMOMLB DUMMY LIBRARY (MIII) 1650 920¥64=13303 92064=16013 92064=13401
AMCL3 CLASS I/0 OPTION (MIII) 1808 92064-13303 92064=~16015 92064=13401
XMAPJ MIII ABSOLUTE PROGRAM LOUADER 1728 92064=13305 Q2064=16016 92064=13a01
XFMGCR CARTRIDGE FILE MANAGER 1868 92@64-13308% 92u64-16017 92264=13401
XDRC CARTRIDGE DIR HAN PROGRAM 1650 92064-13304 02p064=16018 92064=13401
%XTHLCR CARTRIDGE DIRECTORY TABLES 165¢ Y2v64-13304 92064-16019 92064-1340)
XDRCY M1 CARTRIDGE DIRECTORY SUBR 1650 92P64-13306 92064-16021 92064=1340]
ARTMGN SYSTEM GENERATOR 1726 92064-13305 92me4=16022 92864=1340)
XKTMLD RELOCATING LOADER (GEN DISC) 1726 92064-13305 92064-16023 92064=134u1
ARIMLD RELOCATING LOADER (APP DISC) 1726 92064-13305 92064-161n23 92064=13402
IRTMSC LOADER SUB CONTROL (APP DISC) 1885 92064-13305 92@64=16024 92064=13402
ARTMSC LOADER SUB CNANTROL (GEN DISC) 180d 92v64-13305 92A64=16024 92064-13401
XMEDIT EDITUR 1703 92064=16025 92064=]13402
XMASME CRNSS REFERENCE SEGMENT 18@5 92¥64-16026 ¥2064=13402
XMPF M1/I1 POWER FAIL 1650 92064-13304 92064-16027 92064=13401
XMPF3 MITI POWER FAIL 1650 92¥64-13304 92064=16029 92¥684-13401
AMALTO AUTOR REL 165@ 9206413304 92264=16030 92064=1340
IMRN RESOURCE NUMBER MNGR (MITII) 1650 92P64-13303 92064-16@31 92064=13401
XMRN RESOURCE NUMBER MANAGER (MI]) 1650 92064-13302 92064-16031 92064-13401
XONMTM MULTI TERMINAL MONITOR (APP D) 1650 92064=13305 92064-16032 92064=-13402
XONMTM MULTI TERMINAL MONITOR (GEN D) 1652 92064+-133085 92064~-16032 92064=13401
{MCGEN ABSOLUTE CARTRIDGE GENERATOR 1805 92164-13307 9206416033

XSGPRP SEGMENT PROGRAM PREP 1650 92064=160n34 92064=13402
XMPRMP PROMPT (MTM) 1650 92064=13305 92064=16035 920684-13401
IMRSPN RESPONSE (MTM) 16509 92064-13375 92064=16036 92964-13491
IMASMA ASSEMBLER MAIN CONTROL 1845 92064=16040 92¥W64~13402
AIMASM] ASSEMBLER SEGMENT 1 1650 92064~16041 92084=13442
AIMASM2 ASSEMBLER SEGMENT 2 1650 02064-16042 92A64=13412
XMASMI ASSEMBLER SEGMENT 3 1650 92064=16p43 92p64=13402
XMaSM4 ASSEMBLER SEGMENT 4 1650 92064=16044 92064~13402
XMFTNQ FORTRAN MAIN CONTKOL 1650 9206416045 92064-13402
AMFTNL FORTRAN SEGMENT | 1650 92@64~16046 92064=13402

57

BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1805 (RTE-M)
MO E DESCRIPTION RE;;E;”N cA:#:iosE PAPER TAPE FLEXIBLE DISC
XMFNT2 | FORTRAN SEGMENT 2 1652 920264~1674a7 92464=13402
XMASMY ASSEMBLER SEGMENT D 1650 9206416050 92¢64=13402
AMXRFPA | CROSS REFERENCE MAIN 165¢ 92P64=~16A51 92064=134d02
XDIRD CARTRINGE DIRECTORY READ 1650 W2¢64=13504 92064=16054 920864~13401
YFMGFA [FLEX DISC FILE MNGR (LEN (180) 1805 92064=-16A55% 92064=13401
XFMGF® | FLEX DISC FILE MNGR (aPP DISC) 1709 Q2064=16055 9¢A64=13402
KOWF F DISC DIRECT PROG (APP DISCK)Y 1650 92064=16356 yeun6a=-13462
XOFF F DISC DIKECT PROG (GEN D1SCH 1650 92064-160356 Yo¢ba=13ayy
LTRLFP FLEXIBLE DISE NIRECT TABLES 1769 92064=160n57 92v64=13401
TOKF 1 F DISC DIRECTOGRY SUH (APP D) 1650 92064a=16060 92064=134un7
ANKF 1 F NISC DIRECTORY SUB (GEN D) 1659 92P6de | bAEY 92064=134y1
IMFGEN | ABSOLUTE FLEXIHLE DISC SYSTEwM 1809 92064~16075 Y2464=134any
ASTRTM | RTEeM SYSTEM START=UP 17v9 92064=13304 920pbd=16080 92464=-13441
LMSYLB RTEeM SYSTEM L IRRARY (GEN DISC 17vy 92664=13306 92064~160081 92064=~134a01
XMSYLR RTE=M SYSTEM [TBRARY (APP DISC 1709 Y2¢64m=1330H 92W64=16081 92464~13a0y
IMSAFD FLEXIBLFE DISC RACKIP UTILITY 1749 92¢EN=13409 Q2064160866 Y20t d=13402
&TBLCR | CARTRIDGE DIRECIOKY ThLS SNURL 1650 92r64=13306 02064~18059 92264=134u2
AMHFLP | EDITUK HELP FILE SOURCE 165¢ J2064-18126 Venea=-134uy
BMAUTO | AuTO® SDURCE 1650 Y2eE4=13306 92¢64=18141 Yen6d=134y2
&TBLFP | FLEXIBLE DISC DIRECTORY SOURCE 1709 92064-18171 924ka=134072
XDVR23 | RTE 767v 9T, MAG. TAPE DRIVER A 92062=13304 92202=16001 9/n6a=13401
X20V47 | RTE 929n2A LRIVER WITKOUT NMS 1643 92nE2=13302 9290a=16vn2 Yenbam13any
%3047 | RTE 92990A DRIVER WITH DMS 1543 Y2162-13302 92900=160p3 yennd=134iy

58

BULLETINS

TRAINING SCHEDULE

The current schedule for customer training courses on HP 1000 computer systems products is given in this section. Included
are courses offered both in U.S. and in Europe during the upcoming months.

Your can also obtain a copy of the training schedule from your local HP sales office. A European course schedule is available
through the sales offices in Europe; a U.S. schedule through U.S. sales offices.

*Prices quoted are for courses at the U.S. training centers only. For prices of courses at European training centers please
consult your local HP sales office.

DATA SHEETS

Data sheets giving detailed information on each of the courses scheduled are available from your local HP representative.

REGISTRATION

Requests for enrollment in any of the above courses should be made through your local HP representative. He will supply the
Training Registrar at the appropriate location with the course number, dates, and requested motel reservations. Enrollments are
acknowledged by a written confirmation indicating the training course, time of class, location and accomodations reserved.

ACCOMMODATIONS

Students provide their own transportation meals and lodging. The Training Registrar will be pleased to assist in securing motel
reservations at the time of registration.

CANCELLATIONS

In the event you are unable to attend a class for which you are registered, please notify the Training Center Registrar
immediately in order that we may offer your seat to another student.

59

BULLETINS

NEW COURSES

The following new courses have been added to the HP 1000 Computer Systems Training Schedule since the last issue of the
Communicator.

22952B HP 1000 ASSEMBLER
PROGRAMMING COURSE

Description: This course covers the operation of the RTE assembler in an HP 1000 computer system environment. Major
emphasis is placed on the development of assembly language programs for use in an RTE operating system.

Length: 5 days.

Lab: Provides extensive hands-on experience in the coding, editing, assembly and debugging of RTE assembler programs
using an HP 1000 system.

Prerequisites: Completion of either the RTE-II/lll Operating Systems Course (22965B) or the RTE-M Operating System Course
(22985A), or equivalent RTE experience.

22987A DS/1000 USER'S COURSE

Description: This course covers the fundamentals of the HP DS/1000 Distributed Systems Network, including: network
philosophy, operator commands, remote /O, remote file access, remote EXEC calls, program-to-program calls, and store-and-
forward communications. Information is provided on both memory-based and disc-based RTE systems operation in addition to
information on an HP 3000 MPE link.

Length: 5 days.

Lab: Provides hands-on experience on programming of a multi-node DS/1000 distributed systems network.

Prerequisites: Completion of either the RTE-II/lll Operating Systems Course (229658) or the RTE-M Operating System Course
(22985A), or equivalent RTE experience. The HP 3000 Comprehensive Introduction Course (22801A) is also recommended for

those customers whose networks include an HP 3000 node.

22961B THEORY OF OPERATION
OF DS/1000

Description: This course provides a thorough exposure to the internal functioning of the DS/1000 software as it relates to an HP
1000-to-HP 1000 link. Topics covered include communications management, microcoded driver, remote file manager, network
configuration, link protocol, generation and performance evaluation. Information is provided on the level of program listings,
flowcharts, and tables.

Note: Customers whose networks include an HP 3000 node should also take the one-day DS/1000 to HP 3000 Theory of
Operation Course (22962B).

Length: 4 days.

Lab: Provides hands-on programming of a DS/1000 network, use of system utilities, diagnostics, and troubleshooting tools.
System generation and network configuration are covered in detail.

Prerequisites: Completion of the DS/1000 User's Course (22987A).

60

22962B THEORY OF OPERATION FOR DS/1000-TO-HP 3000

BULLETINS

Description: This course provides a thorough exposure to the internal functioning of the DS/1000 software as it relates to an HP
1000-to-HP 3000 link. Topics covered include communications management, network configuration, link protocol, HP 1000 as a
master to MPE, and HP 1000 as a slave to MPE. Information is provided on the level of program listings, flowcharts, and tables.

Length: 1 day.

Lab: None.
Prerequisites: Completion of the Theory of Operation of DS/1000 Course (22961B), which is normally taken earlier in the same
week.
U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES
CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) | (Sunnyvale) (Boise)
229658 RTE-II-11 May 15 May 1 May 1
June 5 Jun 5 May 15
10 days 1000 Jun 19 Jut 17 Jun 12
Jul 10 Aug 14 Jul 10
{Course inctudes Jul 24 Jul 24
RTE-W/ operat- Aug 7 Aug 7
ing system, tch Aug 21 Aug 21
Spoo! manitor and
file manager.)
22985A RTE-M Jun 26 Jun 26
Aug 14
5 days 500
22977A IMAGE May 15 May 15 Jun 5
Jul 24 Jun 19 Aug 21
5 days 500 Jul 31
229528 1000 ASMB Jun 26 Jun 5
Aug 14 Jul 17
5 days 500 Aug 28
22987A" DS/1000 May 8 Jul 10
User's Course Jun 5
Jul 10
5 days 500 Aug 21
229618~ DS/1000 Jun 12 Jul 17
Theory of Op. Aug 28
4 days 400
229628~ DS/1000 HP Jun 16 Jul 21
3000 Theory Sep 1
of Op.
1 day 100

61

BULLETINS

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES (Continued)

CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) { (Cupertino) [(Sunnyvaie) (Boise)
22990A* RTE-Driver May 22 Jul 5
Writing Jut 31
3 days 300
229808 HP-1B Jun 19
Minicomputer Aug 21
Environment
4 days 400
22983A* 21MX-E Jul 17
Microprogram-
ming
5 days 500
92780A" HP-ATS May 8
Automatic Jun 5
Test System Jul 10
5 days 1000
13294A Dev. Terminal Jul 10
5 days 500
22940A 21 Maint. May 15
Jul 10
10 days 1000 Aug 7
22941A 21MX Maint. May 1
Jun 5
5 days 500 Jun 26
Jul 24
Jul 31
Aug 21
Aug 28
22942A 7900 Maint. Jun 12
Jut 31
5 days 500 Aug 28
22945A 7905 Maint. May 8
Jun 19
5 days 500 Jul 17
Aug 7

62

BULLETINS

U. S. TRAINING CENTER SCHEDULES, LOCATIONS, AND RATES (Continued)

CUPERTINO | FULLERTON | ROCKVILLE Data Data Customer
Title Customer Customer Customer Systems Terminals Service Boise
Course Training Training Training Division Division Division Division
Number | Length Price Center Center Center (Cupertino) | (Cupertino) | (Sunnyvale) | (Boise)
91302A 2645 Maint. May 31
3 days 300
22943A 7970B Maint.
5 days 600
22944A 7970E Maint.
5 days 600
*229658 RTE-lIiilis a prerequisite for these courses. Other prerequisites may also apply —refer to the data sheet for each course for more
infarmation.
Cupertino Rockville

CUSTOMER TRAINING CENTER
19310 Pruneridge Avenue
Cupertino, CA 95014

(408) 996-9800

DATA SYSTEMS DIVISION
11000 Wolfe Road
Cupertino, CA 95014
(408) 257-7000

DATA TERMINALS DIVISION
19400 Homestead Road
Cupertino, CA 95014

(408) 257-7000

Fullerton

CUSTOMER TRAINING CENTER
1430 E. Orangethorge Avenue
Fullerton, CA 92631

(714) 870-1000

63

CUSTOMER TRAINING CENTER
4 Choke Cherry Road

Rockville, MD 20850

(301) 948-6370

Sunnyvale

CUSTOMER SERVICE DIVISION
974 East Arques Avenue
Sunnyvale, CA 94086

(408) 735-1550

Boise

BOISE DIVISION

11311 Chinden Boulevard
Boise, |daho 83702

(208) 377-3000

BULLETINS

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS

Title
Course Milan (M)
Number Length Boblingen| Amsterdam| Madrid | Winnersh | Rome (R) | Stockholm| Grenoble | Orsay | Vienna | Brussels
22965B RTE-H/1I May 29 June 19 Jun 19 May 8 [May 29 (R)] May 22 Jun 5| Jun26| Juns
Jun 19 Oct 9 Oct 23| Jun 19 | Jul 3 (M) | Aug 28 Jul 17} Aug 7| Oct 2
10 days Jul 31 Dec 4 Jul24 | Oct 9 (M) Oct 9 Aug 28| Oct 9
Aug 28 Sep 4 Nov 27 Nov 6
(Course includes | Sept 25
RTE-II/1il operat- Oct 23
ing system, batch
spool monitor and
file manager.)
22985A RTE-M Jul 10
Sep 18
5 days
22977A" IMAGE Jul 17 Jul 3 | May 30 May 22| Oct 23
Sep 4 Nov 6 | Aug 29 Jul 3
5 days Oct 23 Sep 25
22952B* 1000 ASMB May 29 Sep 11 Jun 121 Jun5 [May 15 (R)] Junb Jun 19
Jul 24 Nov 6 Oct 161 Jul 10 |Jun 19 (M)} Sep 11 Sep 18
5 days Sep 11 Aug 14 [Sep 11 (M)] Dec 11
Oct 23 Oct 16
22987A" DS/1000 Jut 3 Jut 10
User’s Course Oct 9
5 days
229618* DS/1000 Aug 28 Jul 17
4 days
22962B* DS/1000 HP Sep 1 Jul 21
3000 Theory
of Op.
1 day
22990A" RTE Driver
Writing
3 days
22980B* HP-1B May 15
Minicomputer Aug 14
Environment
4 days
22983A* | 21MX-E Micro- May 22
programming
5 days

64

BULLETINS

EUROPEAN TRAINING CENTER SCHEDULES AND LOCATIONS (Continued)

Title
Course Milan (M)
Number Length Boblingen| Amsterdam | Madrid | Winnersh| Rome (R)| Stockholm| Grenoble| Orsay| Vienna| Brussels

92780A* | HP-ATS Automatic
Test System

5 days

13294A Dev. Terminal

5 days

22940A 2100 Maint.

10 days

22941A 21MX Maint. May 22

5 days

22942A 7900 Maint.

5 days
22945A 7905 Maint. May 15
May 22
5 days
22945A 7905 Maint.
5 days
91302A 2645 Maint.
3 days
22943A 79708 Maint,
5 days
22944A 7970E Maint.
40270A intro to HP Jun 5 May 8
Computers Jul 17 Jul 31
Sep 25 Oct 9
5 days
22965B- FORTRAN IV Jun 12 Jun 5
HO1 Oct 16 Oct 2
5 days

229658 RTE-II/ill is a prerequisite for these courses. Other prerequisites may also apply —refer to the data sheet for each course for more
information.

65

BULLETINS

EUROPEAN TRAINING CENTER ADDRESSES

Boblingen

Kundenschulung
Herrenbergerstrasse 110

D-7030 Boblingen, Wurttemberg

Tel: (07031) 667-1
Telex: 07265739
Cable: HEPAG

Brussels

Avenue du Col! Vert, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

Stockholm

Enighetsvagen 1-3, Fack
S-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Stockholm

Telex: 10721

Madrid

Jerez No. 3
E-Madrid 16

Tel: (1) 458 26 00
Telex: 23515 hpe

Amsterdam

Van Heuven Goedhartlaan 121

Amstelveen - 1134
Netherlands
Tel: 02 672 22 40

Orsay

Quartier de Courtaboeuf
Bolte Postale No. 6
F-91401-Orsay

France

Tel:(01) 907 7825

Grenoble

5, avenue Raymond-Chanas
38320 Eybens
Tel: (76) 25-81-41
Telex: 980124

Vienna

Handelskai 52

Postfach 7

A - 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

Milan

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

Winnersh

King Street Lane
Winnersh, Wokingham
Berkshire RG11 5 AR
Tel: Wokingham 784774
Cable: Hewpie London
Telex: 8471789

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:

Name Title

Company

Street

City State Zip Code
Country

[HP Employee Account Number Location Code

(] DIRECT SUBSCRIPTION List Extended Total

Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)

TOTAL DOLLARS for 5951-6111

5951-6112 COMMUNICATOR 2000 25.00
{if quantity is greater than 1 discount is 40%)

TOTAL DOLLARS for 5951-6112

5951-6113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)

TOTAL DOLLARS for 5951-6113

(] BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability)

Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
- _ 1000
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 %1000
10.00
- 000
TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT
() SERVICE CONTRACT CUSTOMERS [FOR HP USE ONLY]
You will receive one copy of either COMMUNICATOR 1000, CONTRACT KEY

2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will [77777777 77T T o T s s T oo s m e s e s e e e =
be included in normal contract invoices. 5951-6111 Number of additional copies
5951-6112 Number of additional copies

Number of additional copies 5951-6113 Number of additional copies

Approved

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications available from Hewlett-Packard
on an annual (6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s} you wish to receive.
b. Enter number of copies per issue under Qty column.

c. Extend dollars (quantity x list price) in Extended Dollars column.

®

d. Enter discount dollars on line under Extended Dollars. {If quantity is greater than 1 you are entitled to a 40% discount.”)
e

. Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE
DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 $48.00 #/44.00
(if quantity is greater than 1 discount is 40%}) 57 60
TOTAL DOLLARS for 5951-6111 & 86-40

3. To order back issues {see sample below):
a. Indicate which publication you are ordering.
b. Indicate which issue number you want.
c. Enter number of copies per issue.
d. Extend dollars for each issue.
e. Enter total dollars for back issues ordered.

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

SAMPLE
[x] BACK ISSUE ORDER FORM (cash only in U.S. dollars)

{subject to availability) Issue List Extended Total

Part No. Description No. Qty Price Dollars Dollars

5951-6111 COMMUNICATOR 1000 XX / $10.00 8/0.00
XX 2 10.00 20-00
—_— 1000 _

TOTAL DOLLARS #3000

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

e ——m - e e e B

et e —— — — —

e e mm e e s w—— S e e e

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:

Name Title
Company
Street
City State Zip Code
Country
(J HP Employee Account Number Location Code
(] DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
{if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6111
5951-6112 COMMUNICATOR 2000 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
] BACK ISSUE ORDER FORM ({cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Doltars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
10.00
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 - . %10.00
- _ . 10.00
- 1000

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

[0 SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

[FOR HP USE ONLY]
CONTRACT KEY

5951-6111 Number of additional copies
5951-6112 Number of additional copies
5951-6113 Number of additional copies

Approved

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications available from Hewlett-Packard
on an annual {6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.
2. For new direct subscriptions {see sample below):
Indicate which COMMUNICATOR publication(s) you wish to receive.
. Enter number of copies per issue under Qty column.
. Extend dollars (quantity x list price} in Extended Dollars column,
. Enter discount dolars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.”)
. Enter Total Dollars {subtract discount dollars from Extended List Price dollars).

T

@ Qo O

*To qualify for discount alf copies of publications must be maifled to same name and address and ordered at the same time.

SAMPLE
DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 $48.00 #/44.00
(if quantity is greater than 1 discount is 40%) 57 60
TOTAL DOLLARS for 5951-6111 8 86.40

3. To order back issues (see sample below):
a. Indicate which publication you are ordering.
b. Indicate which issue number you want.
c. Enter number of copies per issue.
d. Extend dollars for each issue.
e. Enter total dollars for back issues ordered.

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only} and are subject to availability.

SAMPLE
BACK ISSUE ORDER FORM (cash only in U.S. dollars)

(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 XX / $10.00 8/0.00

_xXx _ 2 10.00 20.00

10.00
TOTAL DOLLARS ¥3000

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

§. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

Please photocopy this order form if
you do not want to cut the page off.
You will automatically receive a new
order form with your order.

HEWLETT (hp; PACKARD

CONTRIBUTED SOFTWARE
Direct Mail Order Form

NOTE: No direct mail order can be
shipped outside the United States.

Please Print:
Name Title
Company
Street
City State Zip Code
Country
Item Part at D ipti List Price Extended
No. No. v escription Each Total
Sub-total
*Tax is verified by computer according to your ZIP CODE. If no sales tax is
added, your state exemption number must be provided: #
If not, your order may have to be returned. Your State & Local
Sales Taxes™
Domestic Customers: Cash required on all orders less than $50.00. Mail the order
form with your check or money order {payable to Hewlett- Handling Charge 1] 50
Packard Co.) or your U.S. Company Purchase QOrder to:
TOTAL

HEWLETT-PACKARD COMPANY

Contributed Software
P.O. Box 61809
Sunnyvale, CA 94088

International Customers:

outside the United States.

All prices domestic U.S.A. only. Prices are subject to change without notice.

Order through your local Hewlett-Packard Sales office. No direct mail order can be shipped

Ordering Information

ORDERING INFORMATION

Programs are available individually in source language on either paper tape, magnetic tape, or
cassettes as indicated in the abstracts.

To order a particular program, it is necessary to specify the program identification number, together
with an option number which indicates the type of product required. The program identification
number with the option number composes the ordering number.

For example:
22113A-K01
The different options are:

K01 — Source paper tape and documentation
K21 — Magnetic tapes and documentation

NOTE
Specify 800 BPI or 1600 BPI Magnetic tape.
B01 — Binary tape and documentation
D00 — Documentation
L00 — Listing

Not all options are available for all programs.

Ten-digit numbers do not require additional option numbers such as K01, K21, etc. The 10-digit
number automatically indicates the option or media ordered.

For example:

22681-18901 — The digits 189 indicate source paper tape plus documentation.

22681-10901 — The digits 109 indicate source magnetic tape plus documentation (800 BPI
magnetic tape)

22681-11901 — The digits 119 indicate source magnetic tape plus documentation (1600
BPI magnetic tape)

22681-13301 — The digits 133 indicate source cassettes plus documentation

Only those options listed in each abstract are available.
Refer to the Price List for prices and correct order numbers.

Hewlett-Packard offers no warranty, expressed or implied and assumes no responsibility in
connection with the program material listed.

cm ms s e am e

e - me Am A o e e i L

—_— e ma me a e

e e m m S b e m Wi a em wE— — EE R —eE m TUE — rwe——-

—_— e c—— ot — -

HEWLETT-PACKARD
LOCUS CONTRIBUTED SOFTWARE CATALOG
DIRECT MAIL ORDER FORM

Please Print:
Name Title
Company
Street
City State Zip Code
Country
] HP Employee Account Number Location Code
List Price Extended
Part Number Description Qty. Each Total
22000-90099 Locus Contributed Software Catalog $15.00

*If no sales tax is added, your state exemption number must
be provided: #

If not, your order may have to be returned.

Domestic Customers: Mail the order form with your check or

Your State & Local
Sales Taxes”

Handling Charge 1.50

TOTAL

money order (payable to Hewlett-Packard Co.) to:

HEWLETT-PACKARD COMPANY
LOCUS CATALOG

P.O. Box 61809

Sunnyvale, CA 94088

International Customers: Order by part number through your local Hewlett-Packard Sales Office.

NOTE: No direct mail order can be shipped outside the United States. All prices domestic U.S.A. only. Prices are

subject to change without notice.

COMPUTER SYSTEMS COMMUNICATOR
NOT TO BE USED FOR ORDERING COMMUNICATOR SUBSCRIPTIONS

HEWLETT \hp, PACKARD
Direct Mail
SHIP TO. Parts and Supplies Order Form
NAME
CUSTOMER
COMPANY REFERENCE =
STREET TAXABLE"?
CITY STATE ZIP CODE
Item [Check Part Qty. Description List Price Extended
No. | Digit No. Each Total
Special Instructions
Sub-total
" Tax 1s verified by computer according to your ZIP CODE. If no sales tax is Your State & Local
added, your state exemption number must be provided: = ______ . Sales Taxes*®
If not, your order may have to be returned.
Check or Money Order, made payable to Hewlett-Pack ard Handling Charge 1150
Company, must accompany order.
A . TOTAL
When completed, please mail this form with payment to:
HEWLETT-PACKARD COMPANY
Mail Order Department Phone: (415) 968-9200
P.O. Drawer #20
Mountain View, CA 94043
Maost orders are shipped within 24 hours of receipt. Shipments to California, Oregon and Washington will be made via UPS. Other
shipments will be sent Air Parcel Post, with the exception that shipments over 25 pounds will be made via truck. No Direct Mail
Order can be shipped outside the U.S.

_ vt e e A E e e b et e et b G e ——

W A i e —

Although every effort is made to ensure the accuracy of the Prices quoted apply only in U.S.A. If outside the U.S., contact ~
data presented in the Communicator, Hewlett-Packard can- your local sales and service office for prices in your country.)
not assume liability for the information contained herein. ~

Printed in US.A. 4/78 Part No.5951-6111

